Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 825: 153911, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35189227

ABSTRACT

Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisting of (a) low fiber (LF) grain, or (b) high fiber (HF) aro-industrial co-product (AICP). The LF diets included corn and soybean meal (CSBM) and barley soybean meal (BSBM). The HF AICP diets were CSBM based and supplemented with one of the following materials: beet pulp; corn distillers dried grains with solubles; soybean hulls; or wheat bran. Diets were fed for 42 d with an average daily feed intake of 2.71 kg d-1. Feces and urine were collected twice daily and added to manure storage containers in which manure slurries were monitored for gas emissions and chemical properties. Manures of animals fed HF diets had significantly (P < 0.05) more excretion of solids, C, N, and organic N, but less total S compared to pigs fed the LF diets. Animals feed HF diets had significantly (P < 0.05) higher levels of ammonia, sulfide, volatile fatty acids, and phenols in manure compared to pigs fed the LF diets. Manure of animals fed HF diets had 30% (P < 0.05) lower NH3 and 17% lower hydrogen sulfide emissions; however, fiber had no impact on odor emissions. Based on the partitioning of nutrients, animals fed HF fiber diets had increased manure retention for C and N but decreased levels of N gas emissions and manure S. There were little differences in manure and gas emissions for animals fed LF diets, but the source of HF AICP diets had a significant impact on manure composition and gas emissions.


Subject(s)
Animal Feed , Manure , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet , Dietary Fiber , Female , Glycine max , Sus scrofa , Swine , Zea mays
2.
Sci Total Environ ; 763: 144207, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33383511

ABSTRACT

Soybean meal is the dominate protein source for swine diets in the world driven largely by economics, nutritive value, and availability; but conditions can change requiring growers to consider more economical and available protein alternatives. A feeding trial was conducted to determine the impact dietary protein source material on manure slurry chemical properties and manure gas emissions. A total of 32 gilts averaging 130 kg BW were fed either a control diet formulated with soybean meal (SB) or an alternative protein source that included corn gluten meal (CG); canola meal (CM); or poultry meal (PM), with all diets containing 176 g protein kg-1. Diets were fed for 45 d with an average daily feed intake of 2.68 kg/d. Feces and urine were collected twice daily after each feeding and added to animal-specific manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Dietary protein source had a significant effect (P < 0.05) on manure pH, total solids, total C, protein N, and total S. Pigs fed the diets containing CM had significantly higher levels of sulfide, butanoic acid, and branch chain fatty acids compared to pigs fed SB diets (P < 0.05). Pigs fed CM diets had significantly lower emissions of NH3 compared to pigs fed SB diets (P < 0.05). There were no significant differences in C or S emissions or in odorant emission as affected by source of dietary protein. Hydrogen sulfide was the most dominate odorants for all dietary treatments.


Subject(s)
Animal Feed , Manure , Animal Feed/analysis , Animals , Diet , Dietary Proteins , Feces , Female , Swine
3.
Sci Total Environ ; 755(Pt 2): 142528, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33045605

ABSTRACT

Crude protein (CP) is a key nutrient in swine diets supplying essential amino acids, N, and S to animals for growth are fed in excess to maximize growth. Swine diets reduced in CP and supplemented with crystalline amino acids have been shown effective at maintaining animal growth while increasing overall CP use efficiency. A feeding trial study was conducted to determine the effects of reduced dietary CP levels on manure slurry chemical properties and gas emissions. A total of 24 gilts averaging 111 kg BW were fed corn and soybean meal diets formulated with 8.7, 14.8, and 17.6% CP using crystalline amino acid supplementation in the 8.7 and 14.8% CP diets, but only intact protein, soybean meal, in the diet containing 17.6% CP. Diets were fed for 45 d with an average daily feed intake (ADFI) of 2.70 kg across all diets. Animals were fed twice daily with both feces and urine collected during each feeding and added to animal-specific manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Increasing dietary CP levels increased manure pH, total solids, total N, and total S, including increased levels of ammonia (NH3), volatile fatty acids, and phenolic compounds. Pigs fed lower CP diets had lower emissions of NH3, branched chain fatty acids (BCFA), and phenol compounds which translated into lower emissions in total odor. Emissions of NH3 and odor were reduced by 8.9% and 4.2%, respectively, for each unit percent decline in dietary CP. Hydrogen sulfide was the dominate odorant associated with manure odor emissions. Based on nutrient mass balance, animal retention of dietary N and S increased by 7.0% and 2.4%, respectively, for each unit percent drop in crude protein fed animals, while C retention in the animal declined by 2.1%.


Subject(s)
Animal Feed , Manure , Ammonia/analysis , Animal Feed/analysis , Animals , Diet , Dietary Proteins , Dietary Supplements , Female , Swine
4.
Sci Total Environ ; 689: 1115-1124, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31466151

ABSTRACT

Sulfur is a key nutrient in swine diets and is associated with hydrogen sulfide (H2S) emissions, odor, and respiratory distress of animals. Due to potential increases in S levels in swine diets by using alternative feedstuffs, a feeding trial study was conducted to determine the effect of dietary S source has on manure slurry chemical properties and gas emissions. A total of 24 gilts averaging 139 kg BW were fed a control diet formulated with corn and soybean meal (CSBM) containing 1.80 g S kg-1 or diets containing 3.50 g S kg-1 feed as supplied by calcium sulfate (CaSO4), distillers dried grains with solubles (DDGS), or feather meal (CFM). Diets were fed for 41 d with an ADFI of 2.70 kg/d. Feces and urine were collected twice daily after each feeding and added to the manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Dietary S source had a significant effect on excretion of DM, C, N, and S in manure. Pigs fed the diets containing DDGS had significantly higher levels of NH3, VFAs, and phenols in manure compared to pigs fed the CSBM diet. Pigs fed diets with organic S (i.e., DDGS and CFM) had lower emissions of H2S compared to pigs fed the diet with inorganic sulfur (CaSO4). In contrast, there were no significant differences in C or N emissions as affected by dietary treatment. Odor and odorant emissions differed by dietary treatment, with pigs fed the CFM diet having the highest odor emissions as compared to pigs fed the control CSBM diet. Pigs fed diets containing CFM and DDGS had a greater percentage of their chemical odor associated with volatile organic compounds while animals fed the CSBM diet or the diet with CaSO4 had greater percentage associated with H2S emissions.


Subject(s)
Diet/methods , Sulfur/analysis , Animal Feed , Animals , Greenhouse Gases/analysis , Sus scrofa , Swine
5.
Sci Total Environ ; 687: 800-807, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412483

ABSTRACT

Sulfur is an essential nutrient for animal growth but is also associated with odor and morbidity of animals from swine operations. A study was conducted to determine the effects of increasing dietary S levels in swine diets on DM, pH, C, N, S, VFA, indole, and phenol concentrations in the manure, and on the emissions of C-, N-, and S-containing gases. A total of 24 gilts averaging 152 kg BW were fed diets containing 0.19, 0.30, 0.43, or 0.64% dietary S, as supplied by CaSO4, for 31 d, with an ADFI of 3.034 kg d-1. Feces and urine were collected after each feeding and added to manure storage containers. At the end of the study, manure slurries were monitored for gas emissions and chemical properties. Increasing dietary S lowered manure pH by 0.3 units and increased DM, N, and S by 10% for each 1.0 g S increase kg-1 feed intake. Increased dietary S increased NH3, sulfide, butanoic, and pentanoic acid concentrations in manure. Carbon and N emissions were not significantly impacted by dietary S, but S emissions in the form of hydrogen sulfide (H2S) increased by 8% for each 1.0 g S increase kg-1 feed intake. Odor increased by 2% for each 1.0 g increase of S consumed kg-1 feed intake. Phenolic compounds and H2S were the major odorants emitted from manure that increased with increasing dietary S.


Subject(s)
Animal Feed , Diet/methods , Greenhouse Gases/analysis , Sulfur/analysis , Animals , Manure/analysis , Swine
6.
J Anim Sci ; 95(9): 4030-4036, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28991990

ABSTRACT

Three experiments were conducted to determine the effect of narasin on growth performance and on GE and nutrient digestibility in nursery, grower, and finishing pigs fed either a corn-soybean meal (CSBM) diet or a CSBM diet supplemented with distillers dried grains with solubles (DDGS), in combination with either 0 or 30 mg narasin/kg of diet. In Exp. 1 (64 gilts, initial BW = 9.0 kg, SD = 1.0 kg) and Exp. 2 (60 gilts. initial BW = 81.1 kg, SD = 6.1 kg), gilts were allotted into individual pens and fed their experimental diets for 24 and 21 d, respectively. On the last 2 d of each experiment, fecal samples were collected to assess apparent total tract digestibility (ATTD) of GE and various nutrients. In Exp. 3, 2 separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates and fed their experimental diets for 30 d prior to a time-based 6-d total fecal collection period to assess GE and nutrient digestibility. In Exp. 1, there was an interaction between diet type and narasin addition for G:F and for many of the ATTD coefficients measured. When narasin was supplemented to the CSBM diet, ATTD of GE, DM, C, S, phosphorus, NDF, and ADF was either not changed or reduced, while when narasin was supplemented to DDGS diets, these same ATTD parameters were increased (interaction, ≤ 0.05). Even though ADG and ADFI were not affected, G:F was improved in pigs fed the CSBM diet with supplemental narasin, but was reduced in pigs fed the DDGS diet with supplemental narasin (interaction, < 0.05). In Exp. 2, there was an interaction between diet type and narasin supplementation only for ATTD of Ca (interaction, < 0.01), in that narasin supplementation did not change the ATTD of Ca in pigs fed the CSBM diet, while narasin supplementation reduced the ATTD of Ca in pigs fed the DDGS containing diet. In Exp. 3, there was an interaction between diet and narasin only for ATTD of C (interaction, < 0.01) in that narasin supplementation resulted in an increased ATTD of C in pigs fed the CSBM diet, while narasin supplementation to the DDGS containing diet resulted in a reduced ATTD of Ca. In general, the data indicate that narasin interacted with and had its largest effect on pig performance and GE or nutrient digestibility in 9 to 23 kg pigs compared to pigs weighing greater than 80 kg. The data also indicate that the addition of DDGS reduced GE, DM, Ca, and N digestibility, regardless of BW.


Subject(s)
Dietary Fiber/metabolism , Dietary Supplements , Phosphorus, Dietary/metabolism , Pyrans/pharmacology , Swine/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Digestion/drug effects , Feces/chemistry , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Pyrans/administration & dosage , Random Allocation , Glycine max , Swine/growth & development , Zea mays
7.
Bioresour Technol ; 202: 84-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26702515

ABSTRACT

Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 µm) or coarse (631 µm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 µm), and a greater biological activity/potential.


Subject(s)
Animal Feed/analysis , Dietary Fiber/analysis , Manure/analysis , Particle Size , Waste Products/analysis , Anaerobiosis , Animal Nutritional Physiological Phenomena , Animals , Bacteria/metabolism , Diet , Methane/analysis , Glycine max/chemistry , Surface Tension , Swine , Volatilization
8.
J Environ Manage ; 159: 18-26, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25996623

ABSTRACT

Methane emission is an important tool in the evaluation of manure management systems due to the potential impact it has on global climate change. Field procedures used for estimating methane emission rates require expensive equipment, are time consuming, and highly variable between farms. The purpose of this paper is to report a simple laboratory procedure for estimating methane emission from stored manure. The test developed was termed a methane production rate (MPR) assay as it provides a short-term biogas production measurement. The MPR assay incubation time is short (3d), requires no sample preparation in terms of inoculation or dilution of manure, is incubated at room temperature, and the manure is kept stationary. These conditions allow for high throughput of samples and were chosen to replicate the conditions within deep-pit manure storages. In brief, an unaltered aliquot of manure was incubated at room temperature for a three-days to assay the current rate of methane being generated by the manure. The results from this assay predict an average methane emission factor of 12.2 ± 8.1 kg CH4 head(-1) yr(-1) per year, or about 5.5 ± 3.7 kg CH4 per finished animal, both of which compare well to literature values of 5.5 ± 1.1 kg CH4 per finished pig for deep-pit systems (Liu et al., 2013). The average methane flux across all sites and months was estimated to be 22 ± 17 mg CH4 m(-2)-min(-1), which is within literature values for deep-pit systems ranging from 0.24 to 63 mg CH4 m(-2)-min(-1) (Park et al., 2006) and similar to the 15 mg CH4 m(-2)-min(-1) estimated by (Zahn et al., 2001).


Subject(s)
Biofuels/analysis , High-Throughput Screening Assays/methods , Manure , Methane/analysis , Waste Disposal, Fluid/methods , Animals , Manure/analysis , Swine , Temperature
9.
J Environ Qual ; 40(5): 1347-58, 2011.
Article in English | MEDLINE | ID: mdl-21869496

ABSTRACT

The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more serious effects on human or environmental health, such as those posed by pesticides and other toxic industrial pollutants. It is recognized that deterioration of the atmosphere is undesirable, but the short- and long-term impacts of specific agricultural activities on air quality are not well known or understood. These concerns led to the organization of the 2009 American Chemical Society Symposium titled . An outcome of this symposium is this special collection of 14 research papers focusing on various issues associated with production agriculture and its effect on air quality. Topics included emissions from animal feeding operations, odors, volatile organic compounds, pesticides, mitigation, modeling, and risk assessment. These papers provide new research insights, identify gaps in current knowledge, and recommend important future research directions. As the scientific community gains a better understanding of the relationships between anthropogenic activities and their effects on environmental systems, technological advances should enable a reduction in adverse consequences on the environment.


Subject(s)
Agriculture , Air Pollutants , Atmosphere
10.
J Anim Sci ; 88(1): 192-201, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19783691

ABSTRACT

To evaluate the effects of dietary hemicellulose from corn on growth and metabolic measures, female pigs (n = 48; initial BW 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 d. Increasing the hemicellulose level had no impact on ADG or ADFI, but resulted in a quadratic response (P < 0.03) on G:F. To investigate physiological changes that occur with increased dietary hemicellulose, blood, colon contents, and tissue samples from the liver and intestine were obtained from a subset (n = 16; 8 pigs/treatment) of pigs fed the least and greatest hemicellulose levels. The abundance of phospho-adenosine monophosphate-activated protein kinase (AMPK) and the mitochondrial respiratory protein, cytochrome C oxidase II (COXII) were determined in liver, jejunum, ileum, and colon by Western blotting. The mRNA expression levels of AMPKalpha1, AMPKalpha2, PPAR coactivator 1alpha (PGC1-alpha), PPARgamma2, and sirtuin 1 (Sirt1) were determined in liver and intestinal tissues. When compared with pigs fed the control diet, pigs fed the high hemicellulose diet had increased (P < 0.02) plasma triglycerides, but there was no difference in plasma cholesterol, glucose, or insulin. Absolute and relative liver weights were decreased (P < 0.03) in pigs consuming the high hemicellulose diet. The high-fiber diet led to a tendency (P < 0.12) for decreased liver triglyceride content. In pigs fed the high hemicellulose diet, ileal mucosal alkaline phosphatase activity was increased (P < 0.08) and sucrase activity tended (P < 0.12) to be increased. The high hemicellulose diet had no effect on phospho-AMPK, AMPK mRNA, or colonic VFA, but in pigs consuming the high fiber diet there was a greater (P < 0.05) abundance of COXII in colon tissue. The expression of PGC1-alpha, PPARgamma, or Sirt1 mRNA was not altered by dietary fiber in liver, jejunum, or ileum tissue. In colon tissue from pigs fed the high fiber diet there was an increase (P < 0.09) in Sirt1 mRNA and a trend (P < 0.12) toward increased of PGC1-alpha mRNA. These data suggest that alterations in metabolism involved in adaptation to a diet high in hemicellulose are associated with increased colonic Sirt1 mRNA and COXII expression, indicating an increased propensity for oxidative metabolism by the intestine.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Dietary Fiber/pharmacology , Swine/growth & development , Zea mays , Animal Nutritional Physiological Phenomena , Animals , Female , Gene Expression Regulation/drug effects , Intestines/drug effects , Intestines/enzymology , Liver/drug effects , Liver/metabolism
11.
J Anim Sci ; 86(9): 2377-84, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18441076

ABSTRACT

The objective of this study was to compare the use of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total S content in plant-, animal-, and mineral-based feedstuffs, and to provide concentrations of other macro- and micro-minerals contained in these feedstuffs. Forty-five feedstuffs (464 total samples) were obtained from suppliers as well as swine feed and pet food manufacturers throughout the United States. Mineral data from IPC analysis were summarized on a DM basis using sample mean and SD, whereas the comparison of total S content between CNS and ICP was examined by bivariate plot and correspondence correlation. Analyses of a wide range of feedstuffs by CNS and ICP for total S were comparable for all but a few feedstuffs. For potassium iodide and tribasic copper chloride, ICP estimated total S to be lower than when analyzed by CNS (bias = 2.51 +/- 0.15 SE, P < 0.01). In contrast, for defluorinated phosphate and limestone, ICP estimated total S to be greater than when analyzed by CNS (bias = -1.46 +/- 0.51 SE, P < 0.01). All other samples had similar estimates of total S, whether analyzed by CNS or ICP. As expected, S composition varied greatly among feedstuffs. For total S, plant-based feedstuffs generally had lower total S compared with animal-based feedstuffs, whereas minerals supplied in sulfate form had the greatest concentration of total S. In addition to total S, mineral composition data are provided for all feedstuffs as obtained by ICP analysis. Within specific feedstuffs, mineral composition was quite variable, potentially due to low concentrations in the feed-stuff causing high mathematical variation or due to the source of feedstock obtained. In general, analyzed values of P were similar to previous tabular values. These data provide feed formulators a database from which modifications in dietary minerals can be accomplished and from which mineral requirements can be met more precisely to reduce losses of minerals into the environment.


Subject(s)
Animal Feed/analysis , Minerals/analysis , Sulfur/analysis , Animals , Animals, Domestic , Mass Spectrometry , Nutritive Value
12.
J Anim Sci ; 84(6): 1584-92, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16699116

ABSTRACT

An experiment was conducted to investigate the effects of reducing dietary CP and increasing dietary cellulose concentrations on manure DM, C, N, S, VFA, indole, and phenol concentrations. Twenty-two pigs (105 kg initial BW) were fed diets containing either 14.5 or 12.0% CP, in combination with either 2.5 or 8.7% cellulose. Pigs were fed twice daily over the 56-d study, with feed intake averaging 2.74 kg/d. Feces and urine were collected after each feeding and added to the manure storage containers. Manure storage containers were designed to provide a similar unit area per animal as found in industry (7,393 cm2). Before sampling on d 56, the manure was gently stirred to obtain a representative sample for subsequent analyses. An interaction of dietary CP and cellulose was observed for manure acetic acid concentration, in that decreasing CP lowered acetic acid in pigs fed standard levels of cellulose but increased acetic acid in pigs fed greater levels of cellulose (P = 0.03). No other interactions were noted. Decreasing dietary CP reduced manure pH (P = 0.01), NH4 (P = 0.01), isovaleric acid (P = 0.06), phenol (P = 0.05), and 4-ethyl phenol (P = 0.02) concentrations. Increasing dietary cellulose decreased pH (P = 0.01) and NH4 (P = 0.07) concentration but increased manure C (P = 0.03), propionic acid (P = 0.01), butyric acid (P = 0.03), and cresol (P = 0.09) concentrations in the manure. Increasing dietary cellulose also increased manure DM (P = 0.11), N (P = 0.11), and C (P = 0.02) contents as a percentage of nutrient intake. Neither cellulose nor CP level of the diet affected manure S composition or output as a percentage of S intake. Headspace N2O concentration was increased by decreasing dietary CP (P = 0.03) or by increasing dietary cellulose (P = 0.05). Neither dietary CP nor cellulose affected headspace concentration of CH4. This study demonstrates that diets differing in CP and cellulose content can significantly impact manure composition and concentrations of VFA, phenol, and indole, and headspace concentrations of N(2)O, which may thereby affect the environmental impact of livestock production on soil, air, and water.


Subject(s)
Animal Feed/analysis , Cellulose/analysis , Diet , Dietary Proteins/analysis , Feces/chemistry , Swine/metabolism , Animals
13.
J Environ Sci Health B ; 32(6): 861-78, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9350077

ABSTRACT

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofuran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofuran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofuran when compared to untreated soils. Disappearance rates of [14C-URL (uniformly ring labeled)] carbofuran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.


Subject(s)
Carbofuran/analysis , Insecticides/analysis , Soil Pollutants/analysis , Autoradiography , Carbofuran/chemistry , Carbon Radioisotopes , Chromatography, Thin Layer , Florida , Hydrolysis , Oxidation-Reduction , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...