Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 15(5): 1434-1444, 2021 05.
Article in English | MEDLINE | ID: mdl-33349653

ABSTRACT

The ocean is a net source of N2O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N2O via microbial N2O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N2O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O2 tolerance, and community composition of N2O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N2O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N2O cycling. Microbes from the oxic layer consume N2O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N2O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O2 and N2O gradients right above the ODZ is a previously ignored potential gatekeeper of N2O and should be accounted for in the marine N2O budget.


Subject(s)
Nitrous Oxide , Oxygen , Kinetics
2.
Sci Rep ; 9(1): 20122, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882935

ABSTRACT

Many prokaryotes encode protein-based encapsulin nanocompartments, including anaerobic ammonium oxidizing (anammox) bacteria. This study expands the list of known anammox encapsulin systems from freshwater species to include the marine genus Scalindua. Two novel systems, identified in "Candidatus Scalindua rubra" and "Candidatus Scalindua sp. SCAELEC01 167" possess different architectures than previously studied freshwater anammox encapsulins. Characterization of the S. rubra encapsulin confirms that it can self-assemble to form compartments when heterologously expressed in Escherichia coli. BLASTp and HMMER searches of additional genomes and metagenomes spanning a range of environments returned 26 additional novel encapsulins, including a freshwater anammox encapsulin identified in "Candidatus Brocadia caroliniensis". Phylogenetic analysis comparing these 28 new encapsulin sequences and cargo to that of their closest known relatives shows that encapsulins cluster by cargo protein type and therefore likely evolved together. Lastly, prokaryotic encapsulins may be more common and diverse than previously thought. Through searching a small sample size of all public metagenomes and genomes, many new encapsulin systems were unearthed by this study. This suggests that many additional encapsulins likely remain to be discovered.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Environmental Microbiology , Gene Order , Genetic Loci , Geography , Metagenome , Metagenomics/methods , Phylogeny , Protein Multimerization , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...