Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12380, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524787

ABSTRACT

Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Brønsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.e., state of BAS deprotonation). Based on the bond order conservation principle, the changes in the covalent bond between the aluminum and oxygen carrying the proton provide a good description of the BAS deprotonation state. The ammonia and formamide adsorption cause BAS deprotonation and cannot be used to assess intrinsic BAS acidity. The transition from ion-pair formation, specifically conjugated acid/base interaction, in formamide to strong hydrogen bonding in acetone occurs within a narrow range of base proton affinities (812-822 kJ mol-1). The adsorption of acetonitrile results in the formation of hydrogen-bonded complexes, which exhibit a deprotonation state that follows a similar trend to the deprotonation induced by acetone. This allows for a semi-quantitative comparison of the acidity strengths of BAS within and between the different aluminosilicate frameworks.

2.
Sci Rep ; 12(1): 7301, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508590

ABSTRACT

Acid forms of zeolites have been used in industry for several decades but scaling the strength of their acid centers is still an unresolved and intensely debated issue. In this paper, the Brønsted acidity strength in aluminosilicates measured by their deprotonation energy (DPE) was investigated for FAU, CHA, IFR, MOR, FER, MFI, and TON zeolites by means of periodic and cluster calculations at the density functional theory (DFT) level. The main drawback of the periodic DFT is that it does not provide reliable absolute values due to spurious errors associated with the background charge introduced in anion energy calculations. To alleviate this problem, we employed a novel approach to cluster generation to obtain accurate values of DPE. The cluster models up to 150 T atoms for the most stable Brønsted acid sites were constructed on spheres of increasing diameter as an extension of Harrison's approach to calculating Madelung constants. The averaging of DPE for clusters generated this way provides a robust estimate of DPE for investigated zeolites despite slow convergence with the cluster size. The accuracy of the cluster approach was further improved by a scaled electrostatic embedding scheme proposed in this work. The electrostatic embedding model yields the most reliable values with the average deprotonation energy of about 1245 ± 9 kJ·mol-1 for investigated acidic zeolites. The cluster calculations strongly indicate a correlation between the deprotonation energy and the zeolite framework density. The DPE results obtained with our electrostatic embedding model are highly consistent with the previously reported QM/MM and periodic calculations.

3.
J Chem Phys ; 156(9): 094708, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35259911

ABSTRACT

Structures of purely siliceous materials in the International Zeolite Association database were investigated with four different theoretical methods ranging from the empirical approaches, such as the distance least squares and force fields to the computationally demanding dispersion-corrected density functional theory method employing the generalized gradient approximation-type functional. The structural characteristics were first evaluated for dense silica polymorphs, for which reliable low-temperature experiments are available. Due to the significant errors in experimentally determined atomic positions of siliceous zeolites, lattice parameters and the cell volume were proposed as reliable descriptors for the structural assessment of zeolite frameworks. In this regard, the most consistently performing (systematically underestimating/overestimating) methods are the Sanders-Leslie-Catlow (SLC) force field and the PBEsol density functional. The best overall agreement with the experiment is observed for PBEsol-D2. However, it is a result of fortuitous error cancellations rather than improved description upon adding dispersion correction. We proposed two approaches to estimate accurate cell volumes of siliceous materials from theoretical data: (i) using the SLC and PBEsol volumes as lower and upper bounds and (ii) using a structural response to the dispersion correction along with the SLC compressibility as an additional criterion.

4.
Angew Chem Int Ed Engl ; 56(15): 4324-4327, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28295998

ABSTRACT

The assembly-disassembly-organization-reassembly (ADOR) process has been used to disassemble a parent zeolite with the UOV structure type and then reassemble the resulting layers into a novel structure, IPC-12. The structure of the material has previously been predicted computationally and confirmed in our experiments using X-ray diffraction and atomic resolution STEM-HAADF electron microscopy. This is the first successful application of the ADOR process to a material with porous layers.

5.
J Chem Phys ; 141(11): 114702, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25240363

ABSTRACT

The vibrational states of atomic and molecular particles adsorbed on long linear nanographenes are described using reliable theoretical potentials and appropriate vibrational (lateral) Hamiltonians. Although they rigorously obey the Bloch theorem only for infinite nanographenes, the energy patterns of the probed states closely resemble the usual Bloch bands and gaps. In addition, for any finite nanographene, these patterns are enriched by the presence of "solitary" energy levels and the "resonance" structure of the bands. While typical band states are profoundly delocalised due to a fast tunneling of the adsorbed particle, the "solitary" and "resonance" states exhibit strong localisation, similar to the behaviour of the states of the Wannier-Stark ladders in optical and semiconductor superlattices.

6.
Chemphyschem ; 15(14): 2972-6, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25048804

ABSTRACT

To date, the majority of zeolites have been prepared by the solvothermal route using organic structure directing agents. Two new zeolites with structural codes PCR and OKO were recently prepared from UTL germanosilicate by removal of the double-four ring (D4R) connecting the dense two-dimensional layers [Nature Chem. 2013, 5, 628]. The corresponding experimental protocol, Assembly-Disassembly-Organization-Reassembly (ADOR), is explored in this contribution with an in silico investigation. The structure and properties of hypothetical zeolites that could be obtained from zeolites with IWW, IWV, IWR, ITR, and ITH topologies using the ADOR protocol are reported based on a computational investigation. A total of 20 new structures are presented together with their characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...