Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 135(2): 157-62, 1988 May.
Article in English | MEDLINE | ID: mdl-2836438

ABSTRACT

Mouse embryo fibroblast cells (C3H-10T1/2) and the methylcholanthrene-transformed derivative (MCA-10T1/2) were treated with basal modified Eagle's medium (BME) containing 10% fetal bovine serum and varying concentrations of ouabain ranging from 0.05 mM to 0.7 mM for 16 h in culture. After replacing the ouabain-containing medium with Earl's balanced salts solution, System A amino acid transport activity increased from approximately 40 to 500 pmol AIB accumulated.mg protein-1.min-1 in the C3H-10T1/2 cells and from approximately 300 to 700 pmol AIB accumulated.mg protein-1.min-1 in the MCA-10T1/2 cells. The (Na+/K+)-ATPase pump activity also increased from approximately 12 to 46 nmol Rb+ accumulated.mg protein-1.min-1 in the normal cells and from approximately 20 to 42 nmol Rb+ accumulated.mg protein-1.min-1 in the transformed cells. System A and the (Na+/K+)ATPase activity were maximally increased at approximately 0.4-0.6 mM ouabain in the normal cells in contrast to the transformed cells which were maximally stimulated at a concentration of approximately 0.2 mM ouabain. This treatment with ouabain increased the [Na+]i/[K+]i as measured by atomic absorption spectroscopy, and thereby decreased the Na+ and K+ electrochemical gradients. Our data show that the internal ion gradients inverted at a lower concentration of ouabain in the transformed cells compared to the normal cells. The ouabain-induced increase in pump and System A activity shown here was used as a tool to further investigate the coordinated ion transport regulation in the control of cell growth.


Subject(s)
Amino Acids/metabolism , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Aminoisobutyric Acids/metabolism , Animals , Biological Transport/drug effects , Cells, Cultured , Kinetics , Mice , Potassium/metabolism , Rubidium/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...