Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
Addict Behav ; 156: 108067, 2024 09.
Article in English | MEDLINE | ID: mdl-38823347

ABSTRACT

BACKGROUND: Electronic (e-)cigarettes may help adult cigarette smokers achieve cigarette cessation, depending on patterns of e-cigarette use. Among cigarette smokers who do not use e-cigarettes, it is unclear if and how a-priori intentions for use are related to uptake patterns. Longitudinal studies have focused on established e-cigarette users or adolescent and young adult populations exclusively. METHODS: Within a nationwide randomized clinical trial (N = 638), adult cigarette smokers not currently using e-cigarettes were randomized (2:1) to receive (or not) one-month sampling of e-cigarettes. An exploratory factor analysis (EFA) was performed on an established 15-item measure assessing a-priori intentions for e-cigarette use to identify latent variables. Among those receiving e-cigarette products, regression models examined relationships between intentions and: 1) uptake (yes/no), 2) frequency (number of days per week), and 3) amount (puffing episodes per day) of e-cigarette use at one-month follow-up. RESULTS: Two factors emerged from the EFA: 1) cigarette-related intentions (e.g., cigarette cessation, no smell) and 2) novel appeal of e-cigarettes (e.g., flavors). Three items remained and were treated as separate intentions: "feels like cigarette smoking", "curiosity", and "affordability". In the final multivariable models, "feel like cigarette smoking" predicted more frequent e-cigarette use (ß = 0.187, SE = 0.086, p = 0.03); however, none of the five factors/intentions were significantly associated with uptake or amount of use. CONCLUSIONS: For adult cigarette smokers not currently using e-cigarettes, a-priori intentions for using e-cigarettes might not be predictive of if or how these products will be used in the future, suggesting that motives may not drive use behavior.


Subject(s)
Cigarette Smoking , Electronic Nicotine Delivery Systems , Intention , Vaping , Humans , Male , Female , Adult , Vaping/psychology , Vaping/epidemiology , Cigarette Smoking/psychology , Cigarette Smoking/epidemiology , Young Adult , Electronic Nicotine Delivery Systems/statistics & numerical data , Adolescent , Prospective Studies , Middle Aged , Smoking Cessation/psychology , Factor Analysis, Statistical
2.
Blood ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776489

ABSTRACT

Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown etiology. Participants underwent genotyping of CSF-derived DNA using a qPCR-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF and H3F3A genes within 80 minutes of sample acquisition. Canonical mutations were detected in 42% of patients with neoplasms, including cases of primary and secondary CNS lymphoma, glioblastoma, IDH-mutant brainstem glioma and H3K27M-mutant diffuse midline glioma. Genotyping results eliminated the need for surgical biopsies in 7/33 (21.2%) cases of newly diagnosed neoplasms, resulting in significantly accelerated initiation of disease-directed treatment (median 3 vs 12 days; p = 0.027). This assay was then implemented in a Clinical Laboratory Improvement Amendments (CLIA) environment, with 2-day median turnaround for diagnosis of central nervous system lymphoma from 66 patients across 4 clinical sites. Our study prospectively demonstrates that targeted rapid CSF genotyping influences oncologic management for suspected CNS tumors.

3.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
5.
Blood Adv ; 8(12): 3189-3199, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38598710

ABSTRACT

ABSTRACT: Although it is evident that standard-dose whole-brain radiotherapy as consolidation is associated with significant neurotoxicity, the optimal consolidative strategy for primary central nervous system lymphoma (PCNSL) is not defined. We performed a randomized phase 2 clinical trial via the US Alliance cancer cooperative group to compare myeloablative consolidation supported by autologous stem cell transplantation with nonmyeloablative consolidation after induction therapy for PCNSL. To our knowledge, this is the first randomized trial to be initiated that eliminates whole-brain radiotherapy as a consolidative approach in newly diagnosed PCNSL. Patients aged 18 to 75 years were randomly assigned in a 1:1 manner to induction therapy (methotrexate, temozolomide, rituximab, and cytarabine) followed by consolidation with either thiotepa plus carmustine and autologous stem cell rescue vs induction followed by nonmyeloablative, infusional etoposide plus cytarabine. The primary end point was progression-free survival (PFS). A total of 113 patients were randomized, and 108 (54 in each arm) were evaluable. More patients in the nonmyeloablative arm experienced progressive disease or death during induction (28% vs 11%; P = .05). Thirty-six patients received autologous stem cell transplant, and 34 received nonmyeloablative consolidation. The estimated 2-year PFS was higher in the myeloablative vs nonmyeloablative arm (73% vs 51%; P = .02). However, a planned secondary analysis, landmarked at start of the consolidation, revealed that the estimated 2-year PFS in those who completed consolidation therapy was not significantly different between the arms (86% vs 71%; P = .21). Both consolidative strategies yielded encouraging efficacy and similar toxicity profiles. This trial was registered at www.clininicals.gov as #NCT01511562.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Central Nervous System Neoplasms , Lymphoma , Humans , Middle Aged , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/mortality , Adult , Female , Male , Aged , Lymphoma/therapy , Lymphoma/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Young Adult , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Autologous , Adolescent , Cytarabine/therapeutic use , Cytarabine/administration & dosage , Treatment Outcome , Consolidation Chemotherapy , Combined Modality Therapy
7.
EMBO J ; 43(10): 2035-2061, 2024 May.
Article in English | MEDLINE | ID: mdl-38627600

ABSTRACT

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Subject(s)
Phosphatidylinositols , Phospholipid Transfer Proteins , Humans , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Cell Membrane/metabolism , HeLa Cells , Organelles/metabolism , Endosomes/metabolism , Animals
8.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548752

ABSTRACT

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Subject(s)
Glioblastoma , Lung Neoplasms , Humans , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
10.
Radiol Artif Intell ; 6(1): e220231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38197800

ABSTRACT

Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. Keywords: Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 Supplemental material is available for this article. © RSNA, 2023.


Subject(s)
Brain Neoplasms , Deep Learning , Glioblastoma , Humans , Algorithms , Benchmarking , Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging
11.
JAMA Intern Med ; 184(1): 106-108, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37955869

ABSTRACT

This survey study assesses trends in nicotine use among young adults in the US between 2013 and 2021.


Subject(s)
Electronic Nicotine Delivery Systems , Smoking Cessation , Tobacco Products , Vaping , Humans , Young Adult , Nicotine/adverse effects , Vaping/adverse effects , Smoking
12.
Tob Control ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38071523

ABSTRACT

INTRODUCTION: The USA and New Zealand have sought to establish a product standard to set a maximum nicotine level for cigarettes to reduce their addictiveness. This study examined support for very low nicotine cigarettes (VLNCs) in Australia, Canada, England and the USA between 2016 and 2020. METHODS: Repeated cross-sectional data were analysed from participants who currently smoke, formerly smoked or vaped and/or currently vape in the 2016 (n=11 150) and/or 2020 (n=5432) International Tobacco Control (ITC) Four Country Smoking and Vaping Survey. Respondents were asked if they would support a law that reduces the amount of nicotine in cigarettes to make them less addictive. Adjusted and weighted logistic regression analyses estimated the prevalence and predictors of support, such as country, age, sex, education, income, race and smoking/vaping status for VLNCs (support vs oppose/do not know). RESULTS: A majority of respondents supported a VLNC law, with support highest in Canada (69%; 2016 and 2020 combined), followed by England (61%), Australia (60%) and the USA (58%). Overall, support decreased from 62% in 2016 to 59% in 2020 (p=0.004), which did not differ by country. Levels of support differed by smoking/vaping status, where those who exclusively smoked daily showed the lowest level of support (59%) and those who exclusively vaped non-daily had the highest level of support (72%). CONCLUSION: More than half of respondents in all four countries-including those who smoked daily-supported a hypothetical VLNC standard to render cigarettes less addictive. It is important to examine if support is sustained after policies are implemented.

13.
Cancer Res ; 83(24): 4112-4129, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37934103

ABSTRACT

Primary/intrinsic and treatment-induced acquired resistance limit the initial response rate to and long-term efficacy of direct inhibitors of the KRASG12C mutant in cancer. To identify potential mechanisms of resistance, we applied a CRISPR/Cas9 loss-of-function screen and observed loss of multiple components of the Hippo tumor suppressor pathway, which acts to suppress YAP1/TAZ-regulated gene transcription. YAP1/TAZ activation impaired the antiproliferative and proapoptotic effects of KRASG12C inhibitor (G12Ci) treatment in KRASG12C-mutant cancer cell lines. Conversely, genetic suppression of YAP1/WWTR1 (TAZ) enhanced G12Ci sensitivity. YAP1/TAZ activity overcame KRAS dependency through two distinct TEAD transcription factor-dependent mechanisms, which phenocopy KRAS effector signaling. First, TEAD stimulated ERK-independent transcription of genes normally regulated by ERK (BIRC5, CDC20, ECT2, FOSL1, and MYC) to promote progression through the cell cycle. Second, TEAD caused activation of PI3K-AKT-mTOR signaling to overcome apoptosis. G12Ci treatment-induced acquired resistance was also caused by YAP1/TAZ-TEAD activation. Accordingly, concurrent treatment with pharmacologic inhibitors of TEAD synergistically enhanced KRASG12C inhibitor antitumor activity in vitro and prolonged tumor suppression in vivo. In summary, these observations reveal YAP1/TAZ-TEAD signaling as a crucial driver of primary and acquired resistance to KRAS inhibition and support the use of TEAD inhibitors to enhance the antitumor efficacy of KRAS-targeted therapies. SIGNIFICANCE: YAP1/TAZ-TEAD activation compensates for loss of KRAS effector signaling, establishing a mechanistic basis for concurrent inhibition of TEAD to enhance the efficacy of KRASG12C-selective inhibitor treatment of KRASG12C-mutant cancers. See related commentary by Johnson and Haigis, p. 4005.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , TEA Domain Transcription Factors , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins , TEA Domain Transcription Factors/antagonists & inhibitors
14.
Neurooncol Adv ; 5(1): vdad116, 2023.
Article in English | MEDLINE | ID: mdl-38024244

ABSTRACT

Background: A randomized, phase II, placebo-controlled, and blinded clinical trial (NCT01062425) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, versus placebo in combination with radiation and temozolomide in newly diagnosed glioblastoma. Methods: Patients with newly diagnosed glioblastoma were randomly assigned 2:1 to receive (1) cediranib (20 mg) in combination with radiation and temozolomide; (2) placebo in combination with radiation and temozolomide. The primary endpoint was 6-month progression-free survival (PFS) based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted MRI brain scans and was tested using a 1-sided Z test for 2 proportions. Adverse events (AEs) were evaluated per CTCAE version 4. Results: One hundred and fifty-eight patients were randomized, out of which 9 were ineligible and 12 were not evaluable for the primary endpoint, leaving 137 eligible and evaluable. 6-month PFS was 46.6% in the cediranib arm versus 24.5% in the placebo arm (P = .005). There was no significant difference in overall survival between the 2 arms. There was more grade ≥ 3 AEs in the cediranib arm than in the placebo arm (P = .02). Conclusions: This study met its primary endpoint of prolongation of 6-month PFS with cediranib in combination with radiation and temozolomide versus placebo in combination with radiation and temozolomide. There was no difference in overall survival between the 2 arms.

15.
Cancer Res ; 83(24): 4095-4111, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37729426

ABSTRACT

Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE: Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation
16.
J Clin Oncol ; 41(36): 5524-5535, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37722087

ABSTRACT

PURPOSE: The Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) is a phase II platform trial that uses response adaptive randomization and genomic profiling to efficiently identify novel therapies for phase III testing. Three initial experimental arms (abemaciclib [a cyclin-dependent kinase [CDK]4/6 inhibitor], neratinib [an epidermal growth factor receptor [EGFR]/human epidermal growth factor receptor 2 inhibitor], and CC-115 [a deoxyribonucleic acid-dependent protein kinase/mammalian target of rapamycin inhibitor]) were simultaneously evaluated against a common control arm. We report the results for each arm and examine the feasibility and conduct of the adaptive platform design. PATIENTS AND METHODS: Patients with newly diagnosed O6-methylguanine-DNA methyltransferase-unmethylated glioblastoma were eligible if they had tumor genotyping to identify prespecified biomarker subpopulations of dominant glioblastoma signaling pathways (EGFR, phosphatidylinositol 3-kinase, and CDK). Initial random assignment was 1:1:1:1 between control (radiation therapy and temozolomide) and the experimental arms. Subsequent Bayesian adaptive randomization was incorporated on the basis of biomarker-specific progression-free survival (PFS) data. The primary end point was overall survival (OS), and one-sided P values are reported. The trial is registered with ClinicalTrials.gov (identifier: NCT02977780). RESULTS: Two hundred thirty-seven patients were treated (71 control; 73 abemaciclib; 81 neratinib; 12 CC-115) in years 2017-2021. Abemaciclib and neratinib were well tolerated, but CC-115 was associated with ≥ grade 3 treatment-related toxicity in 58% of patients. PFS was significantly longer with abemaciclib (hazard ratio [HR], 0.72; 95% CI, 0.49 to 1.06; one-sided P = .046) and neratinib (HR, 0.72; 95% CI, 0.50 to 1.02; one-sided P = .033) relative to the control arm but there was no PFS benefit with CC-115 (one-sided P = .523). None of the experimental therapies demonstrated a significant OS benefit (P > .05). CONCLUSION: The INSIGhT design enabled efficient simultaneous testing of three experimental agents using a shared control arm and adaptive randomization. Two investigational arms had superior PFS compared with the control arm, but none demonstrated an OS benefit. The INSIGhT design may promote improved and more efficient therapeutic discovery in glioblastoma. New arms have been added to the trial.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Random Allocation , Bayes Theorem , Brain Neoplasms/therapy , ErbB Receptors/genetics , Biomarkers
17.
EClinicalMedicine ; 63: 102142, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37753443

ABSTRACT

Background: As summarised in the most recent Cochrane review, the few clinical trials on e-cigarettes are largely focused on smoking cessation. We aimed to determine the naturalistic uptake, use, and impact of e-cigarettes among adults who may or may not want to stop smoking. Methods: In this naturalistic, randomised, controlled clinical trial, adult smokers, across the motivational spectrum and with minimal history of e-cigarette use, were recruited online from the general community within 11 cities across the USA. Participants were randomly assigned (2:1) to either receive either a free 4-week supply of flavoured, tank-style e-cigarette, or not. E-cigarette group participants received a battery and device with up to 30 pre-filled tanks, offered among five flavours, with minimal instructions on use. The study's primary purpose was to descriptively assess naturalistic uptake and usage of the e-cigarette, and to secondarily assess its impact on smoking behavior. The latter, assessed through six months of follow-up, included: a) self-reported 7-day point prevalence abstinence, b) incidence of quit attempts, and c) smoking reduction. This trial is registered at ClinicalTrials.gov, NCT03453385. Findings: Between 5/2018 and 3/2022, 638 adult smokers were enrolled and randomly assigned (427 in the e-cigarette group and 211 in the no-product control group). Uptake of e-cigarettes was robust: approximately 70% of participants used the product, with average usage exceeding 4 days per week during the initial 30 days. Based on an intent-to-treat approach where missing data is imputed as smoking, almost all behavioral outcomes favored the e-cigarette group relative to no-product control, including point prevalence abstinence at six months (Odds Ratio [OR] = 1.8; 95% Confidence Interval [CI] = 1.0-3.1), cumulative incidence of 24-hr quit attempts (OR = 1.5; 95% CI = 1.0-2.2), and having reduced smoking by at least 50% since baseline (OR = 1.8; 95% CI = 1.2-2.7). Results were similar under an alternative imputation. Interpretation: Complementing cessation-focused trials, results suggest that unguided e-cigarette use also leads to smoking cessation, allaying the notion that causal effects of e-cigarettes on cessation are not reflective of real-world scenario of self-determined use. For smokers who may not be able to quit using existing pharmacologic approaches, e-cigarettes may be considered to achive that purpose. Funding: National Cancer Institute.

18.
Neurology ; 101(17): e1741-e1746, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37527941

ABSTRACT

OBJECTIVES: The folate antagonist high-dose methotrexate (HD-MTX) is integral to induction chemotherapy for primary CNS lymphoma (PCNSL); however, it can be associated with leukoencephalopathy. Methylenetetrahydrofolate reductase (MTHFR) is involved in intracellular folate depletion. We assessed whether MTHFR polymorphisms affect the risk of leukoencephalopathy. METHODS: We retrospectively searched our database at the Massachusetts General Hospital for newly diagnosed PCNSL treated with HD-MTX (without radiotherapy nor intrathecal chemotherapy). RESULTS: Among 68 patients with PCNSL, MTHFR polymorphisms were found in 60 individuals (88.2%) including a 677C→T genotype, a 1298A→C genotype, or a combined 677C→T/1298A→C genotype. Neither MTX clearance nor response to induction therapy was affected by specific genotypes, and complete response was achieved in 72.1% of patients by HD-MTX-based induction. However, the 1298A→C genotype was associated with increased frequency and severity of leukoencephalopathy over time (odds ratio 4.0, CI 1.5-11.4). Such genotype predicted treatment-induced leukoencephalopathy with a sensitivity of 71.0% and a specificity of 62.2% (area under the curve 0.67, CI 0.5-0.8; p = 0.019). While progression-free survival did not differ in genotype-based subgroups, overall survival was lower for the 1298A→C genotype. DISCUSSION: The MTHFR 1298A→C genotype may serve to identify patients with PCNSL at elevated risk of HD-MTX-induced leukoencephalopathy. This seems to translate into reduced survival, potentially due to decreased functional status.


Subject(s)
Lymphoma , Methotrexate , Humans , Methotrexate/adverse effects , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Retrospective Studies , Folic Acid , Genotype , Lymphoma/drug therapy , Lymphoma/genetics
19.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37584601

ABSTRACT

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Histones/genetics , Treatment Outcome , Epigenesis, Genetic , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...