Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-517706

ABSTRACT

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimers disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1 is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD. TeaserSARS-CoV-2 and Alzheimers disease share similar neuroinflammatory processes, which may help explain neuro-PASC.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-213777

ABSTRACT

We investigated the immune events following SARS-CoV-2 infection, from the acute inflammatory state up to four weeks post infection, in non-human primates (NHP) with heterogeneous pulmonary pathology. The acute phase was characterized by a robust and rapid migration of monocytes expressing CD16 from the blood and concomitant increase in CD16+ macrophages in the lungs. We identified two subsets of interstitial macrophages (HLA-DR+ CD206-), a transitional CD11c+ CD16+ cell population that was directly associated with IL-6 levels in plasma, and one long lasting CD11b+ CD16+ cell population. Strikingly, levels of monocytes were a correlate of viral replication in bronchial brushes and we discovered TARC (CCL17) as a new potential mediator of myeloid recruitment to the lungs. Worse disease outcomes were associated with high levels of cell infiltration in lungs including CD11b+ CD16hi macrophages and CD11b+ neutrophils. Accumulation of macrophages was long-lasting and detectable even in animals with mild or no signs of disease. Interestingly, animals with anti-inflammatory responses including high IL-10:IL-6 and kynurenine to tryptophan ratios had less signs of disease. Our results unravel cellular mechanisms of COVID-19 and suggest that NHP may be appropriate models to test immune therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...