Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nano Lett ; 23(14): 6458-6464, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37442114

ABSTRACT

The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing. The crystal spacing of the CNTs and fullerenes is not altered, suggesting that they are not exerting significant internal pressure on each other. In low concentrations, the addition of networked fullerenes makes the CNT wire mechanically stronger. More importantly, novel mutually aligned and networked fullerene supramolecules are now in a bulk self-supporting architecture.

2.
Nat Commun ; 12(1): 4931, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389723

ABSTRACT

Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m-1 K-2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.

3.
J Org Chem ; 79(5): 2094-104, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24533440

ABSTRACT

The Suzuki-Miyaura cross-coupling reaction is a foundation stone of modern organic synthesis, as evidenced by its widespread use in the preparation of pharmaceuticals, agrochemicals, polymers, and other functional materials. With the prevalence of this venerable reaction in industrial synthesis, it is prudent to ensure its application adheres to the tenets of green chemistry. The introduction of cross-coupling catalysts that are active in sustainable solvents is therefore an important endeavor. In this report, a melamine-palladium complex is introduced as a versatile catalyst for the Suzuki-Miyaura cross-coupling reaction. This catalyst is soluble and active in both water and the renewable organic solvent ethyl lactate. The melamine-palladium catalyst can also be cross-linked by reaction with formaldehyde to generate an insoluble polymeric catalyst that can be recovered after the cross-coupling. The melamine-palladium system is inexpensive, easy to handle, bench-stable, and effective in catalysis in the presence of a variety of impurities (high cross-coupling yields were obtained in reactions run in unfiltered river water to illustrate this final point). Additionally, investigations reported herein revealed an intriguing relationship between catalytic efficiency and the base employed in the cross-coupling reaction. Implications for the mechanism of transmetalation in aqueous Suzuki-Miyaura cross-coupling reaction are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...