Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroreport ; 12(11): 2549-52, 2001 Aug 08.
Article in English | MEDLINE | ID: mdl-11496146

ABSTRACT

Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.


Subject(s)
Copulation/physiology , Dopamine/metabolism , Nucleus Accumbens/metabolism , Animals , Dopamine Uptake Inhibitors/pharmacology , Electric Stimulation , Electrophysiology , Female , Male , Nomifensine/pharmacology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
2.
Anal Chem ; 72(24): 5994-6002, 2000 Dec 15.
Article in English | MEDLINE | ID: mdl-11140768

ABSTRACT

High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200-400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2,000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10-500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2,000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.


Subject(s)
Dopamine/chemistry , Microelectrodes , Adsorption , Animals , Brain Chemistry , Carbon/chemistry , Mice , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL