Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38471178

ABSTRACT

Objective.Ion computed tomography (iCT) is an imaging modality for the direct determination of the relative stopping power (RSP) distribution within a patient's body. Usually, this is done by estimating the path and energy loss of ions traversing the scanned volume utilising a tracking system and a separate residual energy detector. This study, on the other hand, introduces the first experimental study of a novel iCT approach based on time-of-flight (TOF) measurements, the so-called Sandwich TOF-iCT concept, which in contrast to any other iCT systems, does not require a residual energy detector for the RSP determination.Approach.A small Sandwich TOF-iCT demonstrator was built based on low gain avalanche diodes (LGADs), which are 4D-tracking detectors that allow to simultaneously measure the particle position and time-of-arrival with a precision better than 100µm and 100 ps, respectively. Using this demonstrator, the material and energy-dependent TOF was measured for several homogeneous PMMA slabs in order to calibrate the acquired TOF against the corresponding water equivalent thickness (WET). With this calibration, two proton radiographs (pRads) of a small aluminium stair phantom were recorded at MedAustron using 83 MeV and 100.4 MeV protons.Main results.Due to the simplified WET calibration models used in this very first experimental study of this novel approach, the difference between the measured and theoretical WET ranged between 37.09% and 51.12%. Nevertheless, the first TOF-based pRad was successfully recorded showing that LGADs are suitable detector candidates for Sandwich TOF-iCT.Significance.While the system parameters and WET estimation algorithms require further optimization, this work was an important first step to realize Sandwich TOF-iCT. Due to its compact and cost-efficient design, Sandwich TOF-iCT has the potential to make iCT more feasible and attractive for clinical application, which, eventually, could enhance the treatment planning quality.


Subject(s)
Avalanches , Proton Therapy , Humans , Protons , Radiography , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Water
2.
Brachytherapy ; 20(5): 1062-1069, 2021.
Article in English | MEDLINE | ID: mdl-34193362

ABSTRACT

PURPOSE: To quantitatively evaluate through automated simulations the clinical significance of potential high-dose rate (HDR) prostate brachytherapy (HDRPB) physics errors selected from our internal failure-modes and effect analysis (FMEA). METHODS AND MATERIALS: A list of failure modes was compiled and scored independently by 8 brachytherapy physicists on a one-to-ten scale for severity (S), occurrence (O), and detectability (D), with risk priority number (RPN) = SxOxD. Variability of RPNs across observers (standard deviation/average) was calculated. Six idealized HDRPB plans were generated, and error simulations were performed: single (N = 1722) and systematic (N = 126) catheter shifts (craniocaudal; -1cm:1 cm); single catheter digitization errors (tip and connector needle-tips displaced independently in random directions; 0.1 cm:0.5 cm; N = 44,318); and swaps (two catheters swapped during digitization or connection; N = 528). The deviations due to each error in prostate D90%, urethra D20%, and rectum D1cm3 were analyzed using two thresholds: 5-20% (possible clinical impact) and >20% (potentially reportable events). RESULTS: Twenty-nine relevant failure modes were described. Overall, RPNs ranged from 6 to 108 (average ± 1 standard deviation, 46 ± 23), with responder variability ranging from 19% to 184% (average 75% ± 30%). Potentially reportable events were observed in the simulations for systematic shifts >0.4 cm for prostate and digitization errors >0.3 cm for the urethra and >0.4 cm for rectum. Possible clinical impact was observed for catheter swaps (all organs), systematic shifts >0.2 cm for prostate and >0.4 cm for rectum, and digitization errors >0.2 cm for prostate and >0.1 cm for urethra and rectum. CONCLUSIONS: A high variability in RPN scores was observed. Systematic simulations can provide insight in the severity scoring of multiple failure modes, supplementing typical FMEA approaches.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Brachytherapy/methods , Humans , Male , Physics , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Front Oncol ; 10: 346, 2020.
Article in English | MEDLINE | ID: mdl-32318331

ABSTRACT

Purpose: The Elements Spine Stereotactic Radiosurgery treatment planning system uses automated volumetric modulated arc radiotherapy that can provide a highly conformal dose distribution to targets, which can provide superior sparing of the spinal cord. This study compares the dosimetric quality of Elements plans with the clinical plans of 20 spine stereotactic radiosurgery/stereotactic body radiation therapy (SRS/SBRT) patients treated at our institution. Methods: Twenty spine SRS/SBRT patients who were clinically treated at our institution were replanned using the automated Elements planning workflow with prespecified templates. Elements automatically evaluates the size and shape of the target to determine if splitting the PTV into simplistic subvolumes, each treated by their own arc(s), would increase conformity and spinal cord sparing. The conformity index, gradient index, PTV D 5%, and maximum and mean cord dose were evaluated for the Elements and clinical plans. Treatment delivery efficiency was also analyzed by comparing the total number of monitor units and the modulation factor. Wilcoxon rank-sum tests were performed on the statistics. Results: Elements split the PTV for 50% of cases, requiring four or six arcs. Overall, Elements plans were found to be superior to clinical plans in conformity index, gradient index, and maximum cord dose. The PTV D 5% and cord mean dose for the Elements plans trended higher and lower, respectively. The numbers of monitor units and modulation factor were also higher for Elements plans, although the differences were not significant. Conclusion: Automated Elements plans achieved superior conformity and cord dose sparing compared to clinical plans and PTV splitting successfully improved spinal cord sparing.

4.
J Contemp Brachytherapy ; 11(1): 91-98, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30911315

ABSTRACT

PURPOSE: Intraoperatively implanted Cesium-131 (131Cs) permanent seed brachytherapy is used to deliver highly localized re-irradiation in recurrent head and neck cancers. A single planar implant of uniform air kerma strength (AKS) seeds and 10 mm seed-to-seed spacing is used to deliver the prescribed dose to a point 5 mm or 10 mm perpendicular to the center of the implant plane. Nomogram tables to quickly determine the required AKS for rectangular and irregularly shaped implants were created and dosimetrically verified. By eliminating the need for a full treatment planning system plan, nomogram tables allow for fast dose calculation for intraoperative re-planning and for a second check method. MATERIAL AND METHODS: TG-43U1 recommended parameters were used to create a point-source model in MATLAB. The dose delivered to the prescription point from a single 1 U seed at each possible location in the implant plane was calculated. Implant tables were verified using an independent seed model in MIM Symphony LDR™. Implant tables were used to retrospectively determine seed AKS for previous cases: three rectangular and three irregular. RESULTS: For rectangular implants, the percent difference between required seed AKS calculated using MATLAB and MIM was at most 0.6%. For irregular implants, the percent difference between MATLAB and MIM calculations for individual seed locations was within 1.5% with outliers of less than 3.1% at two distal locations (10.6 cm and 8.8 cm), which have minimal dose contribution to the prescription point. The retrospectively determined AKS for patient implants using nomogram tables agreed with previous calculations within 5% for all six cases. CONCLUSIONS: Nomogram tables were created to determine required AKS per seed for planar uniform AKS 131Cs implants. Comparison with the treatment planning system confirms dosimetric accuracy that is acceptable for use as a second check or for dose calculation in cases of intraoperative re-planning.

5.
Int J Radiat Oncol Biol Phys ; 103(5): 1271-1279, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30578910

ABSTRACT

PURPOSE: To demonstrate proof of principle of visualizing delivered 3-dimensional (3D) dose distribution using kilovoltage (kv) cone beam computed tomography (CBCT) mounted onboard a linear accelerator. We apply this technique as a unique end-to-end verification of multifocal radiosurgery where the coincidence of radiation and imaging systems is quantified comprehensively at all targets. METHODS AND MATERIALS: Dosimeters (9.5-cm diameter N-isopropylacrylamide) were prepared according to standard procedures at one facility and shipped to a second (remote) facility for irradiation. A 4-arc volumetric modulated arc therapy (VMAT) multifocal radiosurgery plan was prepared to deliver 20 Gy with 6-MV photons to 6 targets (1-cm diameter). A dosimeter was aligned via CBCT and irradiated, followed by 3 CBCT scans acquired immediately, with total time between pre-CBCT and final CBCT <30 minutes. Image processing included background subtraction and low-pass filters. A dose-volume structure was created per target with the same volume as the planned prescription dose volume, and their spatial agreement was quantified using volume centroid and the Jaccard index. For comparison, 5 diagnostic computed tomography (CT) scans were also acquired after >24 hours with the same spatial analysis applied; comparison with planned doses after absolute dose calibration also was conducted. RESULTS: Regions of high dose were clearly visualized in the average CBCT with a contrast-to-noise ratio of 1.7 ± 0.7, which increased to 5.8 ± 0.5 after image processing, and 11.9 ± 3.7 for average diagnostic CT. Centroids of prescription isodose volumes agreed with the root mean square difference of 1.1 mm (range, 0.8-1.7 mm) for CBCT and 0.7 mm (0.4-0.8 mm) for diagnostic CT. The dose was proportional to density above 10 to 12 Gy with a 3D gamma pass rate of 94.0% and 99.5% using 5% for 1-mm and 3% for 2-mm criteria, respectively (threshold = 15 Gy, using global dose criteria). CONCLUSIONS: This work demonstrates for the first time the potential to visualize in 3D delivered dose using onboard kV-CBCT (0.5 × 0.5 × 1 mm3 voxel size) immediately after irradiation with a sufficient contrast-to-noise ratio to measure radiation and imaging system coincidence to within 2 mm.


Subject(s)
Cone-Beam Computed Tomography/methods , Radiometry/instrumentation , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Calibration , Fiducial Markers , Image Processing, Computer-Assisted , Particle Accelerators , Photons/therapeutic use , Quality Assurance, Health Care/methods , Radiosurgery/instrumentation , Radiotherapy, Intensity-Modulated/methods , Signal-To-Noise Ratio , Time Factors
6.
J Contemp Brachytherapy ; 10(6): 577-582, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30662483

ABSTRACT

High-dose-rate (HDR) brachytherapy is an attractive option for patients receiving definitive radiation therapy for prostate cancer with decreased overall dose to the pelvis. However, ulcerative colitis increases rectal toxicity risk and may be a contraindication. A synthetic hydrogel, SpaceOAR (Augmentix Inc., Waltham, MA, USA), can facilitate the use of HDR brachytherapy for patients where rectal toxicity is a limiting factor. SpaceOAR gel (13.19 cc) was utilized in a monotherapy HDR prostate treatment with Ir-192 under transrectal ultrasound guidance, with the intention of decreasing rectal dose. SpaceOAR gel was inserted transperineally into the patient 18 days prior to the procedure. The HDR brachytherapy procedure was tolerated without incident. All planning constraints were met, and the following dosimetry was achieved: Prostate - V100% = 97.3%, V150% = 35%, V200% = 14.5%; Urethra - V118% = 0%; Rectum - D2 cc = 51.6%, V75% = 0 cc. The rectum-catheter spacing was on average between 6-8 mm. Average spacing for our 10 most recent patients without SpaceOAR was 3 mm. SpaceOAR did not hinder or distort ultrasound imaging or increase treatment time. SpaceOAR successfully increases catheter-rectal wall spacing and decreases rectal dose due to improved planning capabilities, while decreasing the likelihood of rectal perforation. One application of this tool is presented to mitigate potential toxicities associated with ulcerative colitis. At five months, one week, and one day follow-up, the patient reported no bowel issues following HDR brachytherapy.

7.
J Radiosurg SBRT ; 4(4): 265-273, 2017.
Article in English | MEDLINE | ID: mdl-29296451

ABSTRACT

PURPOSE: We address the challenges associated with applying a single isocenter treatment technique to extracranial oligometastases. METHODS: We propose a technique that uses a Single Isocenter with Distinct Optimizations (SIDO) in which all Volumetric Modulated Arc Therapy (VMAT) fields share an isocenter but each field treats only one target. When necessary, setup uncertainties from rotations and deformations are mitigated by applying a couch translation between VMAT arcs, and interplay is minimized using dynamic conformal arcs (DCA) as the starting point for inverse optimization. Using CBCTs from eleven previous SBRT cases we determined the likelihood of needing a translational shift between SIDO arcs to correct rotational uncertainties. We also compared SIDO and SIDO with DCA to single (VMAT) and dual (VMAT and DCA) isocenter plans for phantom (N=11) and patient (N=4) cases. RESULTS: Spatial uncertainties from inter-fractional rotations were greatest for large target separation and small margins, with ~30% of fractions requiring a correction (3mm margin and 10cm separation). SIDO with DCA greatly decreased arc modulation, with approximately 20% more modulation than DCA, and similar conformity to conventional VMAT. SIDO and SIDO with DCA had comparable conformity to single and dual isocenter plans when separation between PTVs is >3cm, while traditional single isocenter VMAT had superior conformity for <3cm. SIDO with DCA had superior GI over other planning techniques for almost all cases. CONCLUSION: SIDO for extracranial oligometastases allows flexibility to mitigate spatial uncertainties from rotation and deformation, and has comparable dosimetry to traditional VMAT with low modulation when inverse optimization begins with DCA.

8.
Med Phys ; 43(10): 5437, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27782700

ABSTRACT

PURPOSE: The recent development of multifocal stereotactic radiosurgery (SRS) using a single isocenter volumetric modulated arc theory (VMAT) technique warrants a re-examination of the quality assurance (QA) tolerances for routine mechanical QA recommended by the American Association of Physicists in Medicine Task Group Report Number 142. Multifocal SRS can result in targets with small volumes being at a large off-axis distance from the treatment isocenter. Consequently, angular errors in the collimator, patient support assembly (PSA), or gantry could have an increased impact on target coverage. METHODS: The authors performed a retrospective analysis of dose deviations caused by systematic errors in PSA, collimator, and gantry angle at the tolerance level for routine linear accelerator QA as recommended by TG-142. Dosimetric deviations from multifocal SRS plans (N = 10) were compared to traditional single target SRS using dynamic conformal arcs (N = 10). The chief dosimetric quantities used in determining clinical impact were V100% and D99% of the individual planning target volumes and V12Gy of the healthy brain. RESULTS: Induced errors at tolerance levels showed the greatest change in multifocal SRS target coverage for collimator rotations (±1.0°) with the average changes to V100% and D99% being 5% and 6%, respectively, with maximum changes of 33% and 20%. A reduction in the induced error to half the TG-142 tolerance (±0.5°) demonstrated similar changes in coverage loss to traditional single target SRS assessed at the recommended tolerance level. The observed change in coverage for multifocal SRS was reduced for gantry errors (±1.0°) at 2% and 4.5% for V100% and D99%, respectively, with maximum changes of 18% and 12%. Minimal change in coverage was noted for errors in PSA rotation. CONCLUSIONS: This study indicates that institutions utilizing a single isocenter VMAT technique for multifocal disease should pay careful attention to the angular mechanical tolerances in designing a robust and complete QA program.


Subject(s)
Particle Accelerators , Quality Assurance, Health Care , Radiosurgery/instrumentation , Radiosurgery/standards , Societies, Medical/standards , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Retrospective Studies
9.
Rev Sci Instrum ; 84(4): 043301, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23635189

ABSTRACT

This article reports on the development and the first applications of a new spectrometer which enables the precise and time-resolved measurement of both the energy loss and the charge-state distribution of ion beams with 10 < Z < 30 at energies of 4-8 MeV/u after their interaction with a laser-generated plasma. The spectrometer is based on five 20 × 7 mm(2) large and 20 µm thick polycrystalline diamond samples produced via the Chemical Vapour Deposition (CVD) process and was designed with the help of ion-optical simulations. First experiments with the spectrometer were successfully carried out at GSI using (48)Ca ions at an energy of 4.8 MeV/u interacting with a carbon plasma generated by the laser irradiation of a thin foil target. Owing to the high rate capability and the short response time of the spectrometer, pulsed ion beams with 10(3)-10(4) ions per bunch at a bunch frequency of 108 MHz could be detected. The temporal evolution of the five main charge states of the calcium ion beams as well as the corresponding energy loss values could be measured simultaneously. Due to the outstanding properties of diamond as a particle detector, a beam energy resolution ΔEE ≈ 0.1% could be reached using the presented experimental method, while a precision of 10% in the energy loss and charge-state distribution data was obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...