Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Urol Focus ; 9(5): 781-787, 2023 09.
Article in English | MEDLINE | ID: mdl-37031096

ABSTRACT

BACKGROUND: The optimal radiological follow-up of prostate lesions negative on magnetic resonance imaging (MRI)-targeted biopsy (MRI-TB) is yet to be optimised. OBJECTIVE: To present medium-term radiological and clinical follow-up of biopsy-negative lesions. DESIGN, SETTING, AND PARTICIPANTS: The records for men who underwent multiparametric MRI at the UCLH one-stop clinic for suspected prostate cancer between September 2017 and March 2020 were reviewed (n = 1199). Patients with Likert 4 or 5 lesions were considered (n = 495), and those with a subsequent negative MRI-TB comprised the final study population (n = 91). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Baseline and follow-up MRI and biopsy data (including prostate-specific antigen [PSA], prostate volume, radiological scores, and presence of any noncancerous pathology) were extracted from reports. The last follow-up date was the date of the last test or review in clinic. RESULTS AND LIMITATIONS: Median follow-up was 1.8 yr (656 d, interquartile range [IQR] 359-1008). At baseline, the median age was 65.4 yr (IQR 60.7-70.0), median PSA was 7.1 ng/ml (IQR 4.7-10.0), median prostate volume was 54 ml (IQR 39.5-75.0), and median PSA density (PSAD) was 0.13 ng/ml2 (IQR 0.09-0.18). Eighty-six men (95%) had Likert 4 lesions, while the remaining five (5%) had Likert 5 lesions. Only 21 men (23%) had a single lesion; most had at least two. Atrophy was the most prevalent pathology on MRI-TB, present in 64 men (74%), and followed by acute inflammation in 42 (46%), prostatic intraepithelial neoplasia in 33 (36%), chronic inflammation in 18 (20%), atypia in 13 (14%), and granulomatous inflammation in three (3%). Fifty-eight men had a second MRI study (median 376 d, IQR 361-412). At the second MRI, median PSAD decreased to 0.11 ng/ml2 (IQR 0.08-0.18). A Likert 4 or 5 score persisted only in five men (9%); 40 men (69%) were scored Likert 3, while the remaining 13 (22%) were scored Likert 2 (no lesion). Of 45 men with a Likert ≥3 score, most only had one lesion at the second MRI (28 men; 62%). Of six men with repeat MRI-TB during the study period, two were subsequently diagnosed with prostate cancer and both had persistent Likert 4 scores (at baseline and at least one follow-up MRI). CONCLUSIONS: Most biopsy-negative MRI lesions in the prostate resolve over time, but any persistent lesions should be closely monitored. PATIENT SUMMARY: Lesions in the prostate detected via magnetic resonance imaging (MRI) scans that are negative for cancer on biopsy usually resolve. Repeat MRI can indicate persistent lesions that might need a second biopsy.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Aged , Prostate/diagnostic imaging , Prostate/pathology , Prostate-Specific Antigen , Follow-Up Studies , Biopsy/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Inflammation
2.
Radiology ; 307(1): e220762, 2023 04.
Article in English | MEDLINE | ID: mdl-36511804

ABSTRACT

Background The effects of regional histopathologic changes on prostate MRI scans have not been accurately quantified in men with an elevated prostate-specific antigen (PSA) level and no previous biopsy. Purpose To assess how Gleason grade, maximum cancer core length (MCCL), inflammation, prostatic intraepithelial neoplasia (PIN), or atypical small acinar proliferation within a Barzell zone affects the odds of MRI visibility. Materials and Methods In this secondary analysis of the Prostate MRI Imaging Study (PROMIS; May 2012 to November 2015), consecutive participants who underwent multiparametric MRI followed by a combined biopsy, including 5-mm transperineal mapping (TPM), were evaluated. TPM pathologic findings were reported at the whole-prostate level and for each of 20 Barzell zones per prostate. An expert panel blinded to the pathologic findings reviewed MRI scans and declared which Barzell areas spanned Likert score 3-5 lesions. The relationship of Gleason grade and MCCL to zonal MRI outcome (visible vs nonvisible) was assessed using generalized linear mixed-effects models with random intercepts for individual participants. Inflammation, PIN, and atypical small acinar proliferation were similarly assessed in men who had negative TPM results. Results Overall, 161 men (median age, 62 years [IQR, 11 years]) were evaluated and 3179 Barzell zones were assigned MRI status. Compared with benign areas, the odds of MRI visibility were higher when a zone contained cancer with a Gleason score of 3+4 (odds ratio [OR], 3.1; 95% CI: 1.9, 4.9; P < .001) or Gleason score greater than or equal to 4+3 (OR, 8.7; 95% CI: 4.5, 17.0; P < .001). MCCL also determined visibility (OR, 1.24 per millimeter increase; 95% CI: 1.15, 1.33; P < .001), but odds were lower with each prostate volume doubling (OR, 0.7; 95% CI: 0.5, 0.9). In men who were TPM-negative, the presence of PIN increased the odds of zonal visibility (OR, 3.7; 95% CI: 1.5, 9.1; P = .004). Conclusion An incremental relationship between cancer burden and prostate MRI visibility was observed. Prostatic intraepithelial neoplasia contributed to false-positive MRI findings. ClinicalTrials.gov registration no. NCT01292291 © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Harmath in this issue.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Middle Aged , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Intraepithelial Neoplasia/pathology , Image-Guided Biopsy/methods , Neoplasm Grading , Magnetic Resonance Imaging/methods , Inflammation/pathology
3.
Cell Rep ; 40(9): 111283, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044867

ABSTRACT

Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clinical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease management. Recent studies have described the existence of subclonal populations that may co-operate to drive pro-tumorigenic processes such as cellular invasion. However, a precise quantification of subclonal interactions is lacking, a problem that extends to other cancers. In this study, we combine spatial computational modeling of cellular interactions during invasion with co-evolution experiments of clonally disassembled patient-derived DMG cells. We design a Bayesian inference framework to quantify spatial subclonal interactions between molecular and phenotypically distinct lineages with different patterns of invasion. We show how this approach could discriminate genuine interactions, where one clone enhanced the invasive phenotype of another, from those apparently only due to the complex dynamics of spatially restricted growth. This study provides a framework for the quantification of subclonal interactions in DMG.


Subject(s)
Brain Neoplasms , Glioma , Bayes Theorem , Brain Neoplasms/pathology , Carcinogenesis , Glioma/pathology , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...