Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593521

ABSTRACT

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Subject(s)
Saturn , Stereoisomerism , Gas Chromatography-Mass Spectrometry/methods , Dimethylformamide/chemistry , Exobiology/methods , Extraterrestrial Environment/chemistry , Space Flight
2.
J Chromatogr A ; 1709: 464388, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37742456

ABSTRACT

Among future space missions, national aeronautics and space administration (NASA) selected two of them to analyze the diversity in organic content within Martian and Titan soil samples using a gas chromatograph - mass spectrometer (GC-MS) instrument. The Dragonfly space mission is planned to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for years. One of the main goals of this mission is to understand the past and actual abundant prebiotic chemistry on Titan, which is not well characterized yet. The ExoMars space mission is planned to be launched in 2028 to Mars' surface and explore the Oxia Planum and Mawrth Vallis region for years. The main objectives focus on the exploration of the subsurface soil samples, potentially richer in organics, that might be relevant for the search of past life traces on Mars where irradiation does not impact the matrices and organics. One recently used sample pre-treatment for gas chromatography - mass spectrometry analysis is planned on both space missions to detect refractory organic molecules of interest for astrobiology. This pre-treatment is called derivatization and uses a chemical reagent - called dimethylformamide dimethyl acetal (DMF-DMA) - to sublimate organic compounds keeping them safe from thermal degradation and conserving the chirality of the molecules extracted from Titan or Mars' matrices. Indeed, the detection of building blocks of life or enantiomeric excess of some organics (e.g. amino acids) after DMF-DMA pre-treatment and GC-MS analyses would be both bioindicators. The main results highlighted by our work on DMF-DMA and Tenax®TA interaction and efficiency to detect organic compounds at ppb levels in a fast and single preparation are first that Tenax®TA did not show the onset of degradation until after 150 experiments - a 120 h at 300 °C experiment - which greatly exceeds the experimental lifetimes for the DraMS and GC-space in situ investigations. Tenax®TA polymer and DMF-DMA produce many by-products (about 70 and 46, respectively, depending on the activation temperature). Further, the interaction between the two leads to the production of 22 additional by-products from DMF-DMA degradation, but these listed by-products do not prevent the detection of trace-level organic molecules after their efficient derivatization and volatilization by DMF-DMA in the oven ahead the GC-MS trap and column.

3.
Talanta ; 257: 124283, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36870123

ABSTRACT

One of the main objectives of present and future space exploration missions dedicated to astrobiology is the detection of organic molecules of interest for life (e.g. amino and fatty acids). With this aim, a sample preparation and a gas chromatograph (connected to a mass spectrometer) are generally used. To date, tetramethylammonium hydroxide (TMAH) has been the first and only thermochemolysis reagent to be used for in situ sample preparation and chemical analysis of planetary environments. Although TMAH is widely used in terrestrial laboratories, numerous applications also leverage other thermochemolysis reagents that may be more relevant than TMAH to meet both scientific and technical objectives of space instrumentation. The present study compares the performance of tetramethylammonium hydroxide (TMAH), trimethylsulfonium hydroxide (TMSH), and trimethylphenylammonium hydroxide (TMPAH) reagents on molecules of interest to astrobiology. The study focuses on the analyses of 13 carboxylic acids (C7-C30), 17 proteinic amino acids, and the 5 nucleobases. Here we report the derivatization yield without stirring or adding solvents, the detection sensitivity with mass spectrometry, and the nature of the degradation products from the reagents produced during pyrolysis. We conclude that TMSH and TMAH are the best reagents for analyzing carboxylic acids and nucleobases. Amino acids are not relevant targets for a thermochemolysis over 300 °C as they are degraded and showed high limits of detection. As TMAH, and probably TMSH, meet the space instrumentation requirements, this study informs sample treatment approaches prior to GC-MS analysis in in situ space studies. The thermochemolysis reaction using TMAH or TMSH is also recommended for space return missions to extract organics from a macromolecular matrix, derivatize polar or refractory organic targets, and volatilize with the fewest organic degradations.

4.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Article in English | MEDLINE | ID: mdl-29619117

ABSTRACT

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

5.
Science ; 347(6220): 412-4, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25515119

ABSTRACT

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

6.
Science ; 341(6153): 1238937, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24072926

ABSTRACT

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

7.
Nature ; 463(7279): 344-8, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20090751

ABSTRACT

In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.


Subject(s)
Atmosphere/chemistry , Ozone/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Asia , Ecosystem , Greenhouse Effect , History, 20th Century , History, 21st Century , North America , Ozone/chemical synthesis , Ozone/chemistry , Sample Size , Seasons
8.
Science ; 311(5757): 67-70, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16400145

ABSTRACT

Nitrogen oxides in the lower troposphere catalyze the photochemical production of ozone (O3) pollution during the day but react to form nitric acid, oxidize hydrocarbons, and remove O3 at night. A key nocturnal reaction is the heterogeneous hydrolysis of dinitrogen pentoxide, N2O5. We report aircraft measurements of NO3 and N2O5, which show that the N2O5 uptake coefficient, g(N2O5), on aerosol particles is highly variable and depends strongly on aerosol composition, particularly sulfate content. The results have implications for the quantification of regional-scale O3 production and suggest a stronger interaction between anthropogenic sulfur and nitrogen oxide emissions than previously recognized.

9.
J Environ Monit ; 5(1): 35-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12619754

ABSTRACT

Elevated carbon monoxide (CO) mixing ratios in excess of those derived from emissions inventories have been observed in plumes from one gas- and coal-fired power plant and three of four lignite coal-fired electric utility power plants observed in east and central Texas. Observations of elevated CO on days characterized by differing wind directions show that CO emissions from the lignite plants were relatively constant over time and cannot be ascribed to separate sources adjacent to the power plants. These three plants were found to be emitting CO at rates 22 to 34 times those tabulated in State and Federal emissions inventories. Elevated CO emissions from the gas- and coal-fired plant were highly variable on time scales of hours to days, in one case changing by a factor of 8 within an hour. Three other fossil-fueled power plants, including one lignite-fired plant observed during this study, did not emit substantial amounts of CO, suggesting that a combination of plant operating conditions and the use of lignite coal may contribute to the enhanced emissions. Observed elevated CO emissions from the three lignite plants, if representative of average operating conditions, represent an additional 30% of the annual total CO emissions from point sources for the state of Texas.


Subject(s)
Air Pollutants/analysis , Carbon Monoxide/analysis , Fossil Fuels , Power Plants , Coal , Environmental Monitoring , Texas
10.
Science ; 292(5517): 719-23, 2001 Apr 27.
Article in English | MEDLINE | ID: mdl-11326097

ABSTRACT

Data taken in aircraft transects of emissions plumes from rural U.S. coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NO(x) (NO plus NO(2)) concentration, which is determined by plant NO(x) emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modulate ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NO(x) and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NO(x) emission rates and geographic locations in current and future U.S. ozone control strategies could substantially enhance the efficacy of NO(x) reductions from these sources.

11.
Science ; 288(5464): 324-8, 2000 Apr 14.
Article in English | MEDLINE | ID: mdl-10764643

ABSTRACT

High carbon monoxide (CO) concentrations from uncertain origins occurred episodically in the southeastern United States during the summer of 1995. We show that these episodes were caused by large forest fires in Canada. Over a period of 2 weeks, these natural emissions increased CO concentrations in the southeastern United States as well as along the eastern seaboard, a region with one of the world's highest rates of anthropogenic emissions. Within the forest fire plumes, there were also high concentrations of ozone, volatile organic compounds, and aerosols. These results suggest that the impact of boreal forest fire emissions on air quality in the mid-latitudes of the Northern Hemisphere, where anthropogenic pollutant sources have been considered predominant, needs to be reevaluated.

12.
Science ; 259(5100): 1436-9, 1993 Mar 05.
Article in English | MEDLINE | ID: mdl-17801277

ABSTRACT

Measurement of the levels of ozone and carbon monoxide (a tracer of anthropogenic pollution) at three surface sites on the Atlantic coast of Canada allow the estimation of the amount of ozone photochemically produced from anthropogenic precursors over North America and transported to the lower troposphere over the temperate North Atlantic Ocean. This amount is greater than that injected from the stratosphere, the primary natural source of ozone. This conclusion supports the contention that ozone derived from anthropogenic pollution has a hemisphere-wide effect at northern temperate latitudes.

SELECTION OF CITATIONS
SEARCH DETAIL
...