Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(44): 17588-17600, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31503483

ABSTRACT

Anfinsen's dogma that sequence dictates structure is fundamental to understanding the activity and assembly of proteins. This idea has been applied to all manner of oligomers but not to the behavior of cyclic oligomers, aka macrocycles. We do this here by providing the first proofs that sequence controls the hierarchical assembly of nonbiological macrocycles, in this case, at graphite surfaces. To design macrocycles with one (AAA), two (AAB), or three (ABC) different carbazole units, we needed to subvert the synthetic preferences for one-pot macrocyclizations. We developed a new stepwise synthesis with sequence-defined targets made in 11, 17, and 22 steps with 25, 10, and 5% yields, respectively. The linear build up of primary sequence (1°) also enabled a thermal Huisgen cycloaddition to proceed regioselectively for the first time using geometric control. The resulting macrocycles are planar (2° structure) and form H-bonded dimers (3°) at surfaces. Primary sequences encoded into the suite of tricarb macrocycles were shown by scanning-tunneling microscopy (STM) to impact the next levels of supramolecular ordering (4°) and 2D crystalline polymorphs (5°) at solution-graphite interfaces. STM imaging of an AAB macrocycle revealed the formation of a new gap phase that was inaccessible using only C3-symmetric macrocycles. STM imaging of two additional sequence-controlled macrocycles (AAD, ABE) allowed us to identify the factors driving the formation of this new polymorph. This demonstration of how sequence controls the hierarchical patterning of macrocycles raises the importance of stepwise syntheses relative to one-pot macrocyclizations to offer new approaches for greater understanding and control of hierarchical assembly.

2.
Langmuir ; 35(19): 6304-6311, 2019 May 14.
Article in English | MEDLINE | ID: mdl-30977664

ABSTRACT

Surface-assisted molecular self-assembly is a powerful strategy for forming molecular-scale architectures on surfaces. These molecular self-assemblies have potential applications in organic electronics, catalysis, photovoltaics, and many other technologies. Understanding the intermolecular interactions on a surface can help predict packing, stacking, and charge transport properties of films and allow for new molecular designs to be tailored for a required function. We have previously studied a molecular platform, tris( N-phenyltriazole) (TPT), that exhibits planar stacking through >20 molecular layers through donor-acceptor-type intermolecular π-π contacts between the electron-deficient tris(triazole) core and electron-rich peripheral phenyl units. Here, we investigate an expanded family of TPT-based molecules with variations made on the peripheral aryl groups to modulate the molecular electron distribution and examine the impact on molecular packing and charge transport properties. Molecular-resolution scanning tunneling microscopy was used to compare the molecular packing in the monolayer and to investigate the effects that the structural and electronic modifications have on the stacking in subsequent layers. Conductivity measurements were made using the four-point probe van der Pauw technique to demonstrate charge transport properties comparable to pentacene. Although molecular packing is clearly impacted by the chemical structure, we find that the charge transport efficiency is quite tolerant to small structural variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...