Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(41)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37402361

ABSTRACT

Glyphosate (N-(phosphonomethyl)glycine) is well known nonselective and broad-spectrum herbicide that has been extensively used in agricultural areas around the world to increase agricultural productivity. However, the utilization of glyphosate can cause environmental contamination and health problems. Therefore, the detection of glyphosate with a fast, low-cost, and portable sensor is still important. In this work, the electrochemical sensor has been developed by modifying of working surface on the screen-printed silver electrode (SPAgE) with a mixtures solution between zinc oxide nanoparticles (ZnO-NPs) and poly(diallyldimethylammonium chloride) (PDDA) by the drop-casting process. The ZnO-NPs have been prepared based on a sparking method by using pure zinc wires. The ZnO-NPs/PDDA/SPAgE sensor shows a wide range of glyphosate detection (0µM-5 mM). The limit of detection of ZnO-NPs/PDDA/SPAgE is 2.84µM. The ZnO-NPs/PDDA/SPAgE sensor exhibits high selective towards glyphosate with minimal interference from other commonly used herbicides including paraquat, butachlor-propanil and glufosinate-ammonium. Furthermore, the ZnO-NPs/PDDA/SPAgE sensor demonstrates a good estimation of glyphosate concentration in real samples such as green tea, corn juice and mango juice.

2.
RSC Adv ; 12(25): 16079-16092, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35733661

ABSTRACT

1,1-Dimethyl-4,4-bipyridinium dichloride known as paraquat is a popular well-known herbicide that is widely used in agriculture around the world. However, paraquat is a highly toxic chemical causing damage to vital organs including the respiratory system, liver, heart, and kidneys and death. Therefore, detection of paraquat is still necessary to protect life and the environment. In this work, an electrochemical sensor based on lead oxide nanoparticles (PbO-NPs) modified on a screen-printed silver working electrode (SPE) has been fabricated for paraquat detection at room temperature. The PbO-NPs have been synthesized by using a sparking method via two Pb metal wires. The electrochemical paraquat sensors have been prepared by a simple drop-casting of PbO-NPs solution on the surface of the SPE. The PbO-NPs/SPE sensor exhibits a linear response in the range from 1 mM to 5 mM with good reproducibility and high sensitivity (204.85 µA mM-1 cm-2) for paraquat detection at room temperature. The PbO-NPs/SPE sensor shows high selectivity to paraquat over other popular herbicides such as glyphosate, glufosinate-ammonium and butachlor-propanil. The application of the PbO-NPs/SPE sensor is also demonstrated via the monitoring of paraquat contamination in juice and milk.

3.
Nanotechnology ; 33(40)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35767930

ABSTRACT

Alternating current electroluminescent (AC-EL) device can be considered as a potential candidate for next generation of multifunctional light-emitting sources. In this work, we present a new design of AC-EL device with inclusion of a silver oxide humidity-sensing layer instead of an insulating buffer layer for humidity detection. The ZnS:Cu, Cl and ZnS:Ag+(Zn,Cd)S:Ag phosphors were used as an emissive layer prepared by screen printing method. The silver oxide (AgO/Ag2O) nanoparticles synthesized via a green method were employed as a humidity sensing layer. The developed AC-EL devices exhibited high response, good productivity, high stability, high repeatability and linear relationship with humidity in range of 10%-90% RH as well as no significant effects with several VOCs/gases such as NH3, CO2, acetone, methanol, toluene and propan at room temperature. The effects of parameters such as excitation frequency, applied voltage, and waveforms on the luminance intensity are discussed. The development of the present AC-EL device offers a simplified architecture to enable sensing functions of the AC-EL device via monitoring of light emission changing.

4.
R Soc Open Sci ; 8(7): 210407, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34295526

ABSTRACT

In this work, we present a low-cost, fast and simple fabrication of resistive-type humidity sensors based on the graphene quantum dots (GQDs) and silver nanoparticles (AgNPs) nanocomposites. The GQDs and AgNPs were synthesized by hydrothermal method and green reducing agent route, respectively. UV-Vis spectrophotometer, X-ray photoelectron spectroscopy and field-emission transmission electron microscopy were used to characterize quality, chemical bonding states and morphology of the nanocomposite materials and confirm the successful formation of core/shell-like AgNPs/GQDs structure. According to sensing humidity results, the ratio of GQDs/AgNPs 1 : 1 nanocomposite exhibits the best humidity response of 98.14% with exponential relation in the humidity range of 25-95% relative humidity at room temperature as well as faster response/recovery times than commercial one at the same condition. The sensing mechanism of the high-performance GQDs/AgNPs humidity sensor is proposed via Schottky junction formation and intrinsic synergistic effects of GQDs and AgNPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...