Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Monit ; 5(4): 557-62, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12948227

ABSTRACT

The objective of this study was to determine if there is an exposure gradient in particulate matter concentrations for people living near interstate highways, and to determine how far from the highway the gradient extends. Air samples were collected in a residential area of Greater Cincinnati in the vicinity of two major highways. The measurements were conducted at different distances from the highways by using ultrafine particle counters (measurement range: 0.02-1 microm), optical particle counters (0.3-20 microm), and PM2.5 Harvard Impactors (0.02-2.5 microm). The collected PM2.5 samples were analyzed for mass concentration, for elemental and organic carbon, and for elemental concentrations. The results show that the aerosol concentration gradient was most clearly seen in the particle number concentration measured by the ultrafine particle counters. The concentration of ultrafine particles decreased to half between the sampling points located at 50 m and 150 m downwind from the highway. Additionally, elemental analysis revealed a gradient in sulfur concentrations up to 400 m from the highway in a residential area that does not have major nearby industrial sources. This gradient was qualitatively attributed to the sulfate particle emissions from diesel engine exhausts, and was supported by the concentration data on several key elements indicative of traffic sources (road dust and diesel exhaust). As different particulate components gave different profiles of the diesel exposure gradient, these results indicate that no single element or component of diesel exhaust can be used as a surrogate for diesel exposure, but more comprehensive signature analysis is needed. This characterization is crucial especially when the exposure data are to be used in epidemiological studies.


Subject(s)
Air Pollutants/analysis , Environmental Exposure , Vehicle Emissions/analysis , Environmental Monitoring , Epidemiologic Studies , Humans , Motor Vehicles , Ohio , Particle Size , Urban Population
2.
AIHA J (Fairfax, Va) ; 63(6): 689-97, 2002.
Article in English | MEDLINE | ID: mdl-12570075

ABSTRACT

This study evaluated a new method that uses an optical aerosol photometer for dynamically monitoring dust pickup efficiency during vacuuming. In the first stage of this study the new method was compared with built-in dirt sensors installed by vacuum cleaner manufacturers. Through parallel testing it has been shown that the widely available built-in dirt sensors are not sensitive enough to register small (< 53 microm) dust particles. Therefore, only the optical photometer was used in the rest of the experiments of this study to monitor the dust pickup efficiency while the vacuum cleaner was operated with different nozzles on clean and soiled carpet and vinyl sheet flooring. This method also was used to monitor dust pickup efficiency when vacuuming carpets originating from lead-contaminated homes. The dust pickup efficiencies obtained with the optical aerosol photometer have been compared with the surface lead concentrations found during different stages of cleaning. Results indicate that the dust mass concentration registered with the optical aerosol photometer at the nozzle outlet correlates well with the dust mass collected in the vacuum cleaner filter bag and with the surface lead level. Therefore, dynamic dust pickup monitoring can provide valuable information about the efficiency of cleaning when a vacuum cleaner is used. This suggests that a small aerosol photometer similar to a light-scattering smoke detector would be beneficial in vacuum cleaners used for cleaning surfaces contaminated with leaded dust and biological particles (including allergens).


Subject(s)
Dust , Floors and Floorcoverings , Household Work/methods , Vacuum , Aerosols , Efficiency , Filtration , Materials Testing , Photometry , Sensitivity and Specificity , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...