Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Sci ; 12(20): 6983-6991, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-34123326

ABSTRACT

Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 - or OTf-) based on the cryptand H3L = N[(CH2)2N[double bond, length as m-dash]CH-R-CH[double bond, length as m-dash]N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln-Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)-Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln-Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

2.
Inorg Chem ; 59(22): 16328-16340, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33124425

ABSTRACT

We report the synthesis, characterization, and magnetic properties of eight neutral functionalized trigonal lanthanide coordination complexes LnL with Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8). These were prepared through a one-pot synthesis where, first, the ligand H3L was synthesized in situ through a Schiff base reaction of tris(2-aminoethyl)amine with 2,6-diformyl-p-cresol. Following addition of Ln(OTf)3·xH2O and base, LnL was obtained. Powder X-ray diffraction confirms that all complexes are isostructural. LnL contain pendant, noncoordinating carbonyl functions that are reactive and represent direct anchoring points to appropriately functionalized surfaces. Furthermore, these reactive carbonyl functions can be used to postfunctionalize LnL: for example, with aromatic π systems. We present herein the Schiff base condensation of 7 with benzylamine to yield 9 as well as the characterization and magnetic properties of 9. Our study establishes LnL as a truly versatile module for the surface deposition of Ln-based single-ion magnets.

SELECTION OF CITATIONS
SEARCH DETAIL