Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 15: 815713, 2021.
Article in English | MEDLINE | ID: mdl-35095443

ABSTRACT

Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2 fl/fl, Nkx2.1-Cre + (referred to as GABA-D2R-cKO mice) or Drd2 fl/fl, Emx1-Cre + (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.

2.
Neurol Sci ; 42(7): 2911-2919, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33222103

ABSTRACT

RATIONALE: The activation of the glucagon-like peptide-1 receptor (GLP-1R) has been purported to have antidepressant-like and cognitive-enhancing effects. Many people suffering from major depressive disorder (MDD) also experience deficits in cognition. While currently approved antidepressant pharmacotherapies can alleviate the mood symptoms in some patients, they do not treat the cognitive ones. OBJECTIVES: We tested whether systemic administration of a GLP-1R agonist would alter location discrimination, a cognitive task that is diminished in humans with MDD. METHODS: Male and female laboratory mice (6-8 weeks old, N = 6-14/sex) were trained in a touchscreen operant task of location discrimination. Upon reaching baseline criterion, mice were administered vehicle or a GLP-1R agonist, Exendin-4, systemically prior to testing in probe trials of varying difficulty. RESULTS: Following GLP-1R activation, males showed modest yet non-significant performance in the location discrimination task. Females, however, showed enhanced performance during the most difficult probe tests following Exendin-4 administration. CONCLUSIONS: GLP-1R activation appears to enhance overall performance in the location discrimination task and does so in a sex- and difficulty-dependent manner. These preliminary yet impactful data indicate that GLP-1R agonists may be useful as an adjunctive pharmacotherapy to treat cognitive deficits associated with MDD and/or multiple neurological disorders.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Glucagon-Like Peptide-1 Receptor/metabolism , Sex Factors , Animals , Cognition , Exenatide , Female , Humans , Male , Mice
3.
J Comp Neurol ; 528(14): 2445-2470, 2020 10.
Article in English | MEDLINE | ID: mdl-32170734

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies. We thus developed a bacterial artificial chromosome transgenic mouse, in which expression of a red fluorescent protein (mApple) is driven by the GLP-1R promoter. Using this reporter mouse, we characterized the regional and cellular expression patterns of GLP-1R expressing cells in the CNS, using double-label immunohistochemistry and in situ hybridization. GLP-1R-expressing cells were enriched in several key brain regions and circuits, including the lateral septum, hypothalamus, amygdala, bed nucleus of the stria terminalis, hippocampus, ventral midbrain, periaqueductal gray, and cerebral cortex. In most regions, GLP-1R primarily colocalized with GABAergic neurons, except within some regions such as the hippocampus, where it was co-expressed in glutamatergic neurons. GLP-1R-mApple cells were highly co-expressed with 5-HT3 receptor-containing neurons within the cortex and striatum, as well as with dopamine receptor- and calbindin-expressing cells within the lateral septum, the brain region in which GLP-1R is most highly expressed. In this manuscript, we provide detailed images of GLP-1R-mApple expression and distribution within the brain and characterization of these neurons.


Subject(s)
Brain/metabolism , Glucagon-Like Peptide 1/metabolism , Neurons/metabolism , Animals , Mice , Mice, Transgenic , Models, Animal , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...