Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38880056

ABSTRACT

Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue. This study developed and validated a 3-nitrophenylhydrazine derivatization-based LC-MS/MS method to quantify four reactive aldehydes: malondialdehyde, acrolein, 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Method development involved comparing the sensitivity of detection between widely used derivatization reagents: 2,4-dinitrophenylhydrazine and 3-nitrophenylhydrazine. Our data showed that 3-nitrophenylhydrazine resulted in greater sensitivity. Additional method development included evaluation of hydrolysis sample pretreatment, selection of protein precipitation reagent, and optimization of derivatization conditions. The optimized conditions included no hydrolysis and use of 20 % trichloroacetic acid as the protein precipitation reagent. The optimized derivatization condition was 25 mM 3-nitrophenylhydrazine reacted at 20 °C for 30 min. The chromatographic conditions were optimized to reduce matrix effects, ion suppression, and efficient analysis time (<7-minute analytical run). The four aldehyde species were accurately quantified in brain tissue using stable-labeled internal standards. Application of this assay to a traumatic brain injury mouse model revealed significant accumulation of acrolein, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal at 28 days post injury. Overall, a validated method was developed to rapidly quantify the most prominent reactive aldehydes associated with lipid peroxidation during injury progression following acute brain trauma.

2.
Tissue Eng Part A ; 22(15-16): 1016-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27392582

ABSTRACT

Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.


Subject(s)
Antigens, Differentiation/biosynthesis , Extracellular Matrix/chemistry , Induced Pluripotent Stem Cells/metabolism , Myocardium/chemistry , Myocytes, Cardiac/metabolism , Tissue Scaffolds/chemistry , Animals , Cattle , Coculture Techniques
3.
Biopharm Drug Dispos ; 28(7): 393-402, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17668416

ABSTRACT

The objective of this study was to assess the pharmacokinetics of 6-hydroxybuspirone (6OHB) when given orally via three forms: racemate (BMS-528215), S-enantiomer (BMS-442606) and R-enantiomer (BMS-442608), versus following the administration of buspirone. A double-blind, randomized, four-period, four-treatment, crossover study balanced for residual effects in healthy subjects was conducted (n=20). Subjects received single 10 mg doses of each compound in a randomized fashion with pharmacokinetics determined over a 24 h period. There was a 4-day washout between each dosing period. All three forms of 6OHB (racemate, S-enantiomer and R-enantiomer) were well tolerated. There was nterconversion between enantiomers. The dominant enantiomer was the S-enantiomer no matter which form of 6OHB was administered. All three forms of 6OHB produced approximately 2- to 3-fold greater exposure to total 6OHB than did buspirone. All three forms produced equal exposure to 1-(2-pyrimidinyl)-piperazine (1-PP) which was approximately 30% less than the 1-PP exposure derived from buspirone administration. All three forms of 6OHB produced approximately 3-fold higher 6OHB:1-PP ratios and approximately 2.5-fold higher total 6OHB exposures than did buspirone administration. All compounds were well tolerated. There seemed to be no advantage of one of the enantiomers of 6OHB over the racemate. Therefore, the racemate was chosen for further clinical development.


Subject(s)
Buspirone/analogs & derivatives , Buspirone/metabolism , Adult , Area Under Curve , Buspirone/pharmacokinetics , Cross-Over Studies , Double-Blind Method , Humans , Male , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...