Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 34(Database issue): D181-6, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16381841

ABSTRACT

The Transporter Classification Database (TCDB) is a web accessible, curated, relational database containing sequence, classification, structural, functional and evolutionary information about transport systems from a variety of living organisms. TCDB is a curated repository for factual information compiled from >10,000 references, encompassing approximately 3000 representative transporters and putative transporters, classified into >400 families. The transporter classification (TC) system is an International Union of Biochemistry and Molecular Biology approved system of nomenclature for transport protein classification. TCDB is freely accessible at http://www.tcdb.org. The web interface provides several different methods for accessing the data, including step-by-step access to hierarchical classification, direct search by sequence or TC number and full-text searching. The functional ontology that underlies the database structure facilitates powerful query searches that yield valuable data in a quick and easy way. The TCDB website also offers several tools specifically designed for analyzing the unique characteristics of transport proteins. TCDB not only provides curated information and a tool for classifying newly identified membrane proteins, but also serves as a genome transporter-annotation tool.


Subject(s)
Databases, Protein , Membrane Transport Proteins/classification , Humans , Internet , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/physiology , Sequence Analysis, Protein , User-Computer Interface
2.
J Biol Chem ; 280(12): 12028-34, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15661733

ABSTRACT

The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.


Subject(s)
Carbon-Sulfur Ligases/physiology , Escherichia coli Proteins/physiology , Escherichia coli/metabolism , Lipid Bilayers/metabolism , Lysophospholipids/metabolism , Phospholipid Transfer Proteins/physiology , Catalysis , Cell Membrane/metabolism , Fatty Acids/metabolism
3.
Mol Membr Biol ; 21(3): 171-81, 2004.
Article in English | MEDLINE | ID: mdl-15204625

ABSTRACT

Protein phylogeny, based on primary amino acid sequence relatedness, reflects the evolutionary process and therefore provides a guide to structure, mechanism and function. Any two proteins that are related by common descent are expected to exhibit similar structures and functions to a degree proportional to the degree of their sequence similarity; but two independently evolving proteins should not. This principle provides the impetus to define protein phylogenetic relationships and interrelate families when possible. In this mini-review, we summarize the computational approaches and criteria we use to establish common evolutionary origin. We apply these tools to define distant superfamily relationships between several previously recognized transport protein families. In some cases, available structural and functional data are evaluated in order to substantiate our claim that molecular phylogeny provides a reliable guide to protein structure and function.


Subject(s)
Computational Biology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phylogeny , Amino Acid Sequence , Evolution, Molecular , Membrane Transport Proteins/classification , Molecular Sequence Data , Sequence Homology, Amino Acid
5.
J Mol Microbiol Biotechnol ; 5(1): 1-6, 2003.
Article in English | MEDLINE | ID: mdl-12673055

ABSTRACT

We developed novel programs for displaying and analyzing the transmembrane alpha-helical segments (TMSs) in the aligned sequences of homologous integral membrane proteins. TMS_ALIGN predicts the positions of putative TMSs in multiply aligned protein sequences and graphically shows the TMSs in the alignment. TMS_SPLIT (1). predicts the positions of TMSs for each sequence; (2). allows a user to select proteins with a specified number of TMSs, and (3). splits the sequences into groups of TMSs of equal numbers. TMS_CUT works like TMS_SPLIT, but it can cut sequences with any combination of TMSs. The BASS program similarly allows comparison of protein repeat elements, equivalent to TMS_SPLIT plus IC, but it provides the comparison data expressed in BLAST E values. These programs, together with the IntraCompare program, facilitate the identification of repeat sequences in integral membrane proteins. They also facilitate the estimation of protein topology and the determination of evolutionary pathways.


Subject(s)
Internet , Membrane Proteins/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Software , Amino Acid Sequence , Computational Biology , Membrane Proteins/genetics , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL