Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 1172, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127543

ABSTRACT

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human temporal cortex, but with a strikingly specific regional signature. Together these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally, we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic membrane properties relative to neighboring pyramidal neurons.


Subject(s)
Neurons/physiology , Temporal Lobe/cytology , Transcriptome , Animals , Brain/cytology , Brain/physiology , Electrophysiology/methods , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Mice , Neurons/cytology , Pyramidal Cells/physiology , Telencephalon/cytology , Temporal Lobe/physiology
2.
Nat Neurosci ; 21(9): 1185-1195, 2018 09.
Article in English | MEDLINE | ID: mdl-30150662

ABSTRACT

We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.


Subject(s)
Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , GABAergic Neurons/metabolism , GABAergic Neurons/ultrastructure , Transcriptome , Adult , Aged , Axons/ultrastructure , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Gap Junctions/metabolism , Gap Junctions/ultrastructure , Gene Library , Humans , Male , Polymerase Chain Reaction , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , RNA/analysis , RNA/genetics , Sequence Analysis, RNA
3.
Pac Symp Biocomput ; 22: 564-575, 2017.
Article in English | MEDLINE | ID: mdl-27897007

ABSTRACT

Next generation sequencing of the RNA content of single cells or single nuclei (sc/nRNA-seq) has become a powerful approach to understand the cellular complexity and diversity of multicellular organisms and environmental ecosystems. However, the fact that the procedure begins with a relatively small amount of starting material, thereby pushing the limits of the laboratory procedures required, dictates that careful approaches for sample quality control (QC) are essential to reduce the impact of technical noise and sample bias in downstream analysis applications. Here we present a preliminary framework for sample level quality control that is based on the collection of a series of quantitative laboratory and data metrics that are used as features for the construction of QC classification models using random forest machine learning approaches. We've applied this initial framework to a dataset comprised of 2272 single nuclei RNA-seq results and determined that ~79% of samples were of high quality. Removal of the poor quality samples from downstream analysis was found to improve the cell type clustering results. In addition, this approach identified quantitative features related to the proportion of unique or duplicate reads and the proportion of reads remaining after quality trimming as useful features for pass/fail classification. The construction and use of classification models for the identification of poor quality samples provides for an objective and scalable approach to sc/nRNA-seq quality control.


Subject(s)
High-Throughput Nucleotide Sequencing/statistics & numerical data , Neocortex/cytology , Neocortex/metabolism , RNA, Nuclear/genetics , Sequence Analysis, RNA/statistics & numerical data , Autopsy , Bias , Cell Nucleus/genetics , Computational Biology , Databases, Nucleic Acid , Decision Trees , High-Throughput Nucleotide Sequencing/standards , Humans , Machine Learning , Quality Control , Sequence Analysis, RNA/standards , Single-Cell Analysis , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...