Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 205(12): e0032023, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37991380

ABSTRACT

IMPORTANCE: Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri.


Subject(s)
Bacterial Proteins , Shigella flexneri , Humans , Bacterial Proteins/metabolism , Shigella flexneri/metabolism , Fatty Acids/metabolism , Lipids
2.
Mol Microbiol ; 118(4): 403-416, 2022 10.
Article in English | MEDLINE | ID: mdl-36006410

ABSTRACT

Enterobacterales have developed a specialized outer membrane polysaccharide (enterobacterial common antigen [ECA]). ECA biosynthesis begins on the cytoplasmic side of the inner membrane (IM) where glycosyltransferases sequentially add sugar moieties to form a complete repeat unit which is then translocated across the IM by WzxE before being polymerized into short linear chains by WzyE/WzzE. Research into WecG, the enzyme responsible for generating ECA lipid-II, has not progressed beyond Barr et al. (1988) who described WecG as a membrane protein. Here we revise our understanding of WecG and re-characterize it as a peripherally associated membrane protein. Through the use of Western immunoblotting we show that WecG in Shigella flexneri is maintained to the IM via its three C-terminal helices and further identify key residues in helix II which are critical for this interaction which has allowed us to identify WecG as a GT-E glycosyltransferase. We investigate the possibility of protein complexes and ultimately show that ECA lipid-I maintains WecG to the membrane which is crucial for its function. This research is the first since Barr et al. (1988) to investigate the biochemistry of WecG and reveals possible novel drug targets to inhibit WecG and thus ECA function and cell viability.


Subject(s)
Enterobacteriaceae , Glycosyltransferases , Enterobacteriaceae/metabolism , Antigens, Bacterial/metabolism , Membrane Proteins , Polysaccharides , Sugars , Lipids
3.
Microbiology (Reading) ; 168(4)2022 04.
Article in English | MEDLINE | ID: mdl-35470793

ABSTRACT

Enterobacteriales have evolved a specialized outer membrane polysaccharide [Enterobacterial Common Antigen (ECA)] which allows them to persist in various environmental niches. Biosynthesis of ECA initiates on the cytoplasmic leaflet of the inner membrane (IM) where glycosyltransferases assemble ECA repeat units (RUs). Complete RUs are then translocated across the IM and assembled into polymers by ECA-specific homologues of the Wzy-dependent pathway. Consisting of the membrane proteins Wzx, Wzy and Wzz, the Wzy-dependent pathway is the most common polysaccharide biosynthetic pathway in Gram-negative bacteria where it is most notably involved in LPS O antigen (Oag) biosynthesis. As such, the majority of research directed towards these proteins has been orientated towards Oag biosynthetic homologues with little directed towards ECA homologues. Belonging to the Shape, Elongation, Division and Sporulation (SEDS) protein family, Wzy proteins are polymerases, and are characterized as possessing little or no peptide homology among homologues as well as being polytopic membrane proteins with functionally relevant residues within periplasmic loops, as defined by C-terminal reporter fusion topology mapping. Here, we present the first the first major study into the ECA polymerase WzyE. Multiple sequence alignments and topology mapping showed that WzyE is unlike WzyB proteins involved with Oag biosynthesis WzyE displays high peptide conservation across Enterobacteriales. In silico structures and reporter mapping allowed us to identify possible functionally conserved residues with WzyESF's periplasmic loops, which we showed were crucial for its function. This work provides novel insight into Wzy proteins and suggests that WzyE is an optimal model to investigate Wzy proteins and the Wzy-dependent pathway.


Subject(s)
Bacterial Proteins , Shigella flexneri , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , O Antigens/chemistry , Shigella flexneri/genetics , Shigella flexneri/metabolism
4.
J Bacteriol ; 204(4): e0054621, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35293778

ABSTRACT

Outer membrane (OM) polysaccharides allow bacteria to resist harsh environmental conditions and antimicrobial agents, traffic to and persist in pathogenic niches, and evade immune responses. Shigella flexneri has two OM polysaccharide populations, being enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) O antigen (Oag); both are polymerized into chains by separate homologs of the Wzy-dependent pathway. The two polysaccharide pathways, along with peptidoglycan (PG) biosynthesis, compete for the universal biosynthetic membrane anchor, undecaprenyl phosphate (Und-P), as the finite pool of available Und-P is critical in all three cell wall biosynthetic pathways. Interactions between the two OM polysaccharide pathways have been proposed in the past where, through the use of mutants in both pathways, various perturbations have been observed. Here, we show for the first time that mutations in one of the two OM polysaccharide pathways can affect each other, dependent on where the mutation lies along the pathway, while the second pathway remains genetically intact. We then expand on this and show that the mutations also affect PG biosynthesis pathways and provide data which supports that the classical mutant phenotypes of cell wall mutants are due to a lack of available Und-P. Our work here provides another layer in understanding the complex intricacies of the cell wall biosynthetic pathways and demonstrates their interdependence on Und-P, the universal biosynthetic membrane anchor. IMPORTANCE Bacterial outer membrane polysaccharides play key roles in a range of bacterial activities from homeostasis to virulence. Two such OM polysaccharide populations are ECA and LPS Oag, which are synthesized by separate homologs of the Wzy-dependent pathway. Both ECA and LPS Oag biosynthesis join with PG biosynthesis to form the cell wall biosynthetic pathways, which all are interdependent on the availability of Und-P for proper function. Our data show the direct effects of cell wall pathway mutations affecting all related pathways when they themselves remain genetically unchanged. This work furthers our understanding of the complexities and interdependence of the three cell wall pathways.


Subject(s)
Biosynthetic Pathways , O Antigens , Antigens, Bacterial , Lipopolysaccharides , O Antigens/genetics , Shigella flexneri/genetics
5.
J Bacteriol ; 203(22): e0041321, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34491798

ABSTRACT

Shigella flexneri can synthesize polysaccharide chains having complex sugars and a regulated number of repeating units. S. flexneri lipopolysaccharide O antigen (Oag) is synthesized by the Wzy-dependent pathway, which is the most common pathway used in bacteria for polysaccharide synthesis. The inner membrane protein WzyB polymerizes the Oag repeat units into chains, while the polysaccharide copolymerases WzzB and WzzpHS2 determine the average number of repeat units or "the modal length," termed short type and very long type. Our data show for the first time a direct interaction between WzyB and WzzpHS2, with and without the use of the chemical cross-linker dithiobis (succinimidyl propionate) (DSP). Additionally, mutations generated via random and site-directed mutagenesis identify a region of WzyB that caused diminished function and significantly decreased very long Oag chain polymerization, and that affected the aforementioned interaction. These results provide insight into the mechanisms underlying the regulation of Oag biosynthesis. IMPORTANCE Complex polysaccharide chains are synthesized by bacteria, usually at a regulated number of repeating units, which has broad implications for bacterial pathogenesis. One example is the O antigen (Oag) component of lipopolysaccharide that is predominantly synthesized by the Wzy-dependent pathway. Our findings show for the first time a direct physical interaction between WzyB and WzzpHS2. Additionally, a set of Wzy mutant constructs were generated, revealing a proposed active site/switch region involved in the activity of WzyB and the physical interaction with WzzpHS2. Combined, these findings further understanding of the Wzy-dependent pathway. The identification of a novel interaction with the polysaccharide copolymerase WzzpHS2 and the region of WzyB that is involved in this aforementioned interaction and its impact on WzyB Oag synthesis activity have significant implication for the prevention/treatment of bacterial diseases and discovery of novel biotechnologies.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Shigella flexneri/metabolism , Bacterial Proteins/genetics , DNA, Bacterial , Mutagenesis , Mutation , Plasmids/genetics , Plasmids/metabolism , Shigella flexneri/genetics
6.
Proc Natl Acad Sci U S A ; 112(52): E7266-75, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26676578

ABSTRACT

Cells from all domains of life express glycan structures attached to lipids and proteins on their surface, called glycoconjugates. Cell-to-cell contact mediated by glycan:glycan interactions have been considered to be low-affinity interactions that precede high-affinity protein-glycan or protein-protein interactions. In several pathogenic bacteria, truncation of surface glycans, lipooligosaccharide (LOS), or lipopolysaccharide (LPS) have been reported to significantly reduce bacterial adherence to host cells. Here, we show that the saccharide component of LOS/LPS have direct, high-affinity interactions with host glycans. Glycan microarrays reveal that LOS/LPS of four distinct bacterial pathogens bind to numerous host glycan structures. Surface plasmon resonance was used to determine the affinity of these interactions and revealed 66 high-affinity host-glycan:bacterial-glycan pairs with equilibrium dissociation constants (K(D)) ranging between 100 nM and 50 µM. These glycan:glycan affinity values are similar to those reported for lectins or antibodies with glycans. Cell assays demonstrated that glycan:glycan interaction-mediated bacterial adherence could be competitively inhibited by either host cell or bacterial glycans. This is the first report to our knowledge of high affinity glycan:glycan interactions between bacterial pathogens and the host. The discovery of large numbers of glycan:glycan interactions between a diverse range of structures suggests that these interactions may be important in all biological systems.


Subject(s)
Bacterial Adhesion , Glycoconjugates/metabolism , Lipopolysaccharides/metabolism , Polysaccharides/metabolism , Caco-2 Cells , Calorimetry/methods , Campylobacter jejuni/metabolism , Campylobacter jejuni/physiology , Haemophilus influenzae/metabolism , Haemophilus influenzae/physiology , Host-Pathogen Interactions , Humans , Ileum/metabolism , Ileum/microbiology , Salmonella typhimurium/metabolism , Salmonella typhimurium/physiology , Shigella flexneri/metabolism , Shigella flexneri/physiology , Surface Plasmon Resonance , Thermodynamics
7.
PLoS One ; 10(9): e0138266, 2015.
Article in English | MEDLINE | ID: mdl-26378781

ABSTRACT

Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process.


Subject(s)
Amino Acids/genetics , Bacterial Proteins/genetics , Lipopolysaccharides/genetics , Mutation/genetics , O Antigens/genetics , Shigella flexneri/genetics , Crystallography, X-Ray/methods , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Mutagenesis/genetics , Protein Structure, Tertiary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...