Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13389, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862595

ABSTRACT

While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , S-Phase Kinase-Associated Proteins , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Humans , Signal Transduction , Cell Cycle/genetics , Epithelial-Mesenchymal Transition/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation
2.
Toxicol Appl Pharmacol ; 486: 116936, 2024 May.
Article in English | MEDLINE | ID: mdl-38641223

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is pivotal in development, metabolic homeostasis, and immune responses. While recent research has highlighted AhR's significant role in modulating oxidative stress responses, its mechanistic relationship with ferroptosis-an iron-dependent, non-apoptotic cell death-remains to be fully elucidated. In our study, we discovered that AhR plays a crucial role in ferroptosis, in part by transcriptionally regulating the expression of the solute carrier family 7 member 11 (SLC7A11). Our findings indicate that both pharmacological inactivation and genetic ablation of AhR markedly enhance erastin-induced ferroptosis. This enhancement is achieved by suppressing SLC7A11, leading to increased lipid peroxidation. We also obtained evidence of post-translational modifications of SLC7A11 during ferroptosis. Additionally, we observed that indole 3-pyruvate (I3P), an endogenous ligand of AhR, protects cells from ferroptosis through an AhR-dependent mechanism. Based on these insights, we propose that AhR transcriptionally regulates the expression of SLC family genes, which in turn play a pivotal role in mediating ferroptosis. This underscores AhR's essential role in suppressing lipid oxidation and ensuring cell survival under oxidative stress.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Receptors, Aryl Hydrocarbon , Signal Transduction , Ferroptosis/drug effects , Ferroptosis/physiology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Humans , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Lipid Peroxidation/drug effects , Mice, Inbred C57BL , Mice, Knockout , Gene Expression Regulation , Piperazines/pharmacology
3.
Toxicol Appl Pharmacol ; 482: 116769, 2024 01.
Article in English | MEDLINE | ID: mdl-38007072

ABSTRACT

The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcriptional factor pivotal in responding to environmental stress and maintaining cellular homeostasis. Exposure to specific xenobiotics or industrial compounds in the environment activates AhR and its subsequent signaling, inducing oxidative stress and related toxicity. Past research has also identified and characterized several classes of endogenous ligands, particularly some tryptophan (Trp) metabolic/catabolic products, that act as AhR agonists, influencing a variety of physiological and pathological states, including the modulation of immune responses and cell death. Heavy metals, being non-essential elements in the human body, are generally perceived as toxic and hazardous, originating either naturally or from industrial activities. Emerging evidence indicates that heavy metals significantly influence AhR activation and its downstream signaling. This review consolidates current knowledge on the modulation of the AhR signaling pathway by heavy metals, explores the consequences of co-exposure to AhR ligands and heavy metals, and investigates the interplay between oxidative stress and AhR activation, focusing on the regulation of immune responses and ferroptosis.


Subject(s)
Metals, Heavy , Receptors, Aryl Hydrocarbon , Humans , Receptors, Aryl Hydrocarbon/metabolism , Metals, Heavy/toxicity , Oxidative Stress , Gene Expression Regulation , Signal Transduction/physiology , Ligands
4.
Cancers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36497298

ABSTRACT

Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.

5.
Toxins (Basel) ; 13(2)2021 01 29.
Article in English | MEDLINE | ID: mdl-33572944

ABSTRACT

Cyanobacterial blooms and the associated release of cyanotoxins pose problems for many conventional water treatment plants due to their limited removal by typical unit operations. In this study, a conventional water treatment process consisting of coagulation, flocculation, sedimentation, filtration, and sludge dewatering was assessed in lab-scale experiments to measure the removal of microcystin-LR and Microcystis aeruginosa cells using liquid chromatography with mass spectrometer (LC-MS) and a hemacytometer, respectively. The overall goal was to determine the effect of recycling cyanotoxin-laden dewatered sludge supernatant on treated water quality. The lab-scale experimental system was able to maintain the effluent water quality below relevant the United States Environmental Protection Agency (US EPA) and World Health Organisation (WHO) standards for every parameter analyzed at influent concentrations of M. aeruginosa above 106 cells/mL. However, substantial increases of 0.171 NTU (Nephelometric Turbidity Unit), 7 × 104 cells/L, and 0.26 µg/L in turbidity, cyanobacteria cell counts, and microcystin-LR concentration were observed at the time of dewatered supernatant injection. Microcystin-LR concentrations of 1.55 µg/L and 0.25 µg/L were still observed in the dewatering process over 24 and 48 h, respectively, after the initial addition of M.aeruginosa cells, suggesting the possibility that a single cyanobacterial bloom may affect the filtered water quality long after the bloom has dissipated when sludge supernatant recycling is practiced.


Subject(s)
Drinking Water/microbiology , Harmful Algal Bloom , Marine Toxins/isolation & purification , Microcystins/isolation & purification , Microcystis/isolation & purification , Sewage/microbiology , Water Microbiology , Water Purification , Water Quality , Chemical Precipitation , Chromatography, Liquid , Filtration , Mass Spectrometry , Microcystis/growth & development , Microcystis/metabolism , Nephelometry and Turbidimetry
6.
Environ Toxicol Chem ; 37(12): 3018-3024, 2018 12.
Article in English | MEDLINE | ID: mdl-30242895

ABSTRACT

Silver nanoparticles (Ag-NPs) are ubiquitous in household and medical products because of their antimicrobial activity. A consequence of the high volume of Ag-NP production and usage is increased amounts of Ag-NPs released into the environment. Their small size (1-100 nm) results in unique physiochemical properties that may increase toxicity relative to their bulk counterpart. Therefore, the goal of the present study was to assess the potential toxicity of environmentally relevant concentrations of Ag-NPs in zebrafish (Danio rerio). Wild-type tropical 5D zebrafish embryos were exposed to Ag-NPs from 4 to 120 h postfertilization at 0.03, 0.1, 0.3, 1, and 3 ppm (mg/L). Inductively coupled plasma-mass spectrometry confirmed concentration-dependent uptake of Ag into zebrafish as well as bioaccumulation over time. A morphological assessment revealed no significant hatching impairment, morphological abnormalities, or mortality at any concentration or time point examined. However, assessment of photomotor behavior at 3 d postfertilization (dpf) revealed significant hyperactivity in the 0.3, 1, and 3 ppm Ag-NP treatment groups. At 4 dpf, significant hyperactivity was observed only in the 3 ppm treatment group, whereas 5 dpf larvae exposed to Ag-NPs displayed no significant abnormalities in photomotor behavior. These findings suggest that nonteratogenic concentrations of Ag-NPs are capable of causing transient behavioral changes during development. Environ Toxicol Chem 2018;37:3018-3024. © 2018 SETAC.


Subject(s)
Environmental Exposure/analysis , Metal Nanoparticles/toxicity , Silver/toxicity , Swimming/physiology , Zebrafish/growth & development , Animals , Behavior, Animal/drug effects , Darkness , Larva/drug effects , Larva/physiology , Locomotion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...