Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 207(1): 344-351, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34183368

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Subject(s)
Antibodies, Neutralizing/analysis , Neutralization Tests , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Cohort Studies , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
3.
Nat Commun ; 11(1): 5850, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203876

ABSTRACT

HIV broadly neutralizing antibodies (bnAbs) can suppress viremia and protect against HIV infection. However, their elicitation is made difficult by low frequencies of appropriate precursor B cell receptors and the complex maturation pathways required to generate bnAbs from these precursors. Antibody genes can be engineered into B cells for expression as both a functional antigen receptor on cell surfaces and as secreted antibody. Here, we show that HIV bnAb-engineered primary mouse B cells can be adoptively transferred and vaccinated in immunocompetent mice resulting in the expansion of durable bnAb memory and long-lived plasma cells. Somatic hypermutation after immunization indicates that engineered cells have the capacity to respond to an evolving pathogen. These results encourage further exploration of engineered B cell vaccines as a strategy for durable elicitation of HIV bnAbs to protect against infection and as a contributor to a functional HIV cure.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/physiology , B-Lymphocytes/transplantation , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , Female , Genetic Engineering/methods , HEK293 Cells , HIV Antibodies/blood , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Infections , Humans , Immunization , Immunologic Memory/genetics , Lymphocyte Activation , Mice, Inbred C57BL , Somatic Hypermutation, Immunoglobulin
4.
Proc Natl Acad Sci U S A ; 117(37): 22920-22931, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873644

ABSTRACT

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs). The germline-targeting HIV immunogen eOD-GT8 60mer is currently in clinical trial as a candidate bnAb vaccine priming immunogen. To attempt to model human immune responses to the eOD-GT8 60mer, we tested each authentic naive human VRC01-class BCR mouse model under rare human physiological B cell precursor frequency conditions. B cells with high (HuGL18HL) or medium (HuGL17HL) affinity BCRs were primed, recruited to germinal centers, and they affinity matured, and formed memory B cells. Precursor frequency and affinity interdependently influenced responses. Taken together, these experiments utilizing authentic naive human VRC01-class BCRs validate a central tenet of germline-targeting vaccine design and extend the overall concept of the reverse vaccinology approach to vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Receptors, Antigen, B-Cell/immunology , AIDS Vaccines/immunology , Amino Acid Sequence/genetics , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/pharmacology , CD4 Antigens/immunology , Gene Knock-In Techniques/methods , Germinal Center/immunology , HIV Antigens , HIV Infections/immunology , HIV-1/immunology , Humans , Mice , Mice, Inbred Strains , Mice, Transgenic , Precursor Cells, B-Lymphoid/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...