Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(25): e202203262, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36811602

ABSTRACT

Cu(I) 4H-imidazolate complexes are rare examples of Cu(I) complexes with chelating anionic ligands and are potent photosensitizers with unique absorption and photoredox properties. In this contribution, five novel heteroleptic Cu(I) complexes with monodentate triphenylphosphine co-ligands are investigated. As a consequence of the anionic 4H-imidazolate ligand and in contrast to comparable complexes with neutral ligands, these complexes are more stable than their homoleptic bis(4H-imidazolato)Cu(I) congeners. Here, the ligand exchange reactivity was studied by 31 P-,19 F-, and variable temperature NMR and the ground state structural and electronic properties by X-ray diffraction, absorption spectroscopy, and cyclic voltammetry. The excited-state dynamics were investigated by femto- and nanosecond transient absorption spectroscopy. The observed differences, with respect to chelating bisphosphine bearing congeners, are often due to the increased geometric flexibility of the triphenylphosphines. These observations render the investigated complexes interesting candidates for photo(redox)reactions not accessible with chelating bisphosphine ligands.

2.
Chemistry ; 28(72): e202202697, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36148551

ABSTRACT

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

3.
Chemistry ; 28(25): e202200121, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35263478

ABSTRACT

The intense absorption of light to covering a large part of the visible spectrum is highly desirable for solar energy conversion schemes. To this end, we have developed novel anionic bis(4H-imidazolato)Cu(I) complexes (cuprates), which feature intense, panchromatic light absorption properties throughout the visible spectrum and into the NIR region with extinction coefficients up to 28,000 M-1 cm-1 . Steady-state absorption, (spectro)electrochemical and theoretical investigations reveal low energy (Vis to NIR) metal-to-ligand charge-transfer absorption bands, which are a consequence of destabilized copper-based donor states. These high-lying copper-based states are induced by the σ-donation of the chelating anionic ligands, which also feature low energy acceptor states. The optical properties are reflected in very low, copper-based oxidation potentials and three ligand-based reduction events. These electronic features reveal a new route to panchromatically absorbing Cu(I) complexes.

4.
J Phys Chem B ; 125(41): 11498-11511, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34617757

ABSTRACT

Cu(I) 4H-imidazolato complexes are excellent photosensitizers with broad and intense light absorption properties, based on an earth-abundant metal, and hold great promise as photosensitizers in artificial photosynthesis and for accumulation of redox equivalents. In this study, the excited-state relaxation dynamics of three novel heteroleptic Cu(I) 4H-imidazolato complexes with phenyl, tolyl, and mesityl side groups are systematically investigated by femtosecond and nanosecond time-resolved transient absorption spectroscopy and theoretical methods, complemented by steady-state absorption spectroscopy and (spectro)electrochemistry. After photoexcitation into the metal-to-ligand charge transfer (MLCT) and intraligand charge transfer absorption band, fast (0.6-1 ps) intersystem crossing occurs into the triplet MLCT manifold. The triplet-state population relaxes via the geometrical planarization of the N-aryl rings on the Cu(I) 4H-imidazolato complexes. Depending on the initial Franck-Condon state, the remaining small singlet state population relaxes into two geometrically distinct minima geometries with similar energy, S1/2,relax and S3/4,relax. Subsequent ground-state recovery from S1/2,relax and internal conversion from S3/4,relax to S1/2,relax take place on a 100 ps time scale. The internal conversion can be understood as hole transfer from a dyz-orbital to a dxz-orbital, which is accompanied with the structural reorganization of the coordination environment. Generally, the photophysical processes are determined by the steric hindrance of the side groups on the ligands. And the excited singlet-state pathways are dependent on the excitation wavelength.


Subject(s)
Organometallic Compounds , Ligands , Photosensitizing Agents , Quantum Theory , Spectrum Analysis
5.
Chem Commun (Camb) ; 55(16): 2273-2276, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30719514

ABSTRACT

A comprehensive understanding of how the molecular structure influences the electronic coupling is crucial in optimizing (supra) molecular assemblies for photoinduced electron transfer. Here, we report that the electronic coupling underlying electron transfer from a phenothiazine donor to a photoexcited Ru(tpy)2 acceptor is modulated by substitution of the second (remote) tpy-ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...