Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 58(4): 276-292, 2024.
Article in English | MEDLINE | ID: mdl-38613520

ABSTRACT

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.


Subject(s)
Ginsenosides , Kainic Acid , Mitochondria , STAT3 Transcription Factor , Signal Transduction , Animals , Kainic Acid/toxicity , Mice , Mitochondria/metabolism , Mitochondria/drug effects , STAT3 Transcription Factor/metabolism , Ginsenosides/pharmacology , Signal Transduction/drug effects , Male , Mice, Knockout , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects
2.
J Ginseng Res ; 47(4): 561-571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397414

ABSTRACT

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

3.
Food Chem Toxicol ; 178: 113869, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308051

ABSTRACT

Although the anticonvulsant effects of ginsenosides are recognized, little is known about their effects on the convulsive behaviors induced by the activation of L-type Ca2+ channels. Here, we investigated whether ginsenoside Re (GRe) modulates excitotoxicity induced by the L-type Ca2+ channel activator Bay k-8644. GRe significantly attenuated Bay k-8644-induced convulsive behaviors and hippocampal oxidative stress in mice. GRe-mediated antioxidant potential was more pronounced in the mitochondrial fraction than cytosolic fraction. As L-type Ca2+ channels are thought to be targets of protein kinase C (PKC), we investigated the role of PKC under excitotoxic conditions. GRe attenuated Bay k-8644-induced mitochondrial dysfunction, PKCδ activation, and neuronal loss. The PKCδ inhibition and neuroprotection mediated by GRe were comparable to those by the ROS inhibitor N-acetylcysteine, the mitochondrial protectant cyclosporin A, the microglial inhibitor minocycline, or the PKCδ inhibitor rottlerin. Consistently, the GRe-mediated PKCδ inhibition and neuroprotection were counteracted by the mitochondrial toxin 3-nitropropionic acid or the PKC activator bryostatin-1. GRe treatment did not have additional effects on PKCδ gene knockout-mediated neuroprotection, suggesting that PKCδ is a molecular target of GRe. Collectively, our results suggest that GRe-mediated anticonvulsive/neuroprotective effects require the attenuation of mitochondrial dysfunction and altered redox status and inactivation of PKCδ.


Subject(s)
Ginsenosides , Methamphetamine , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Bays , Ginsenosides/pharmacology , Ginsenosides/metabolism , Hippocampus , Methamphetamine/toxicity , Mice, Knockout , Mitochondria , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
4.
Food Chem Toxicol ; 173: 113627, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682417

ABSTRACT

Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.


Subject(s)
Glutathione Peroxidase GPX1 , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Minocycline/metabolism , Minocycline/pharmacology , Mice, Knockout , Hippocampus
5.
Food Chem Toxicol ; 158: 112657, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34740715

ABSTRACT

Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.


Subject(s)
Androstanols/pharmacology , Bipolar Disorder , Dextromethorphan/adverse effects , Ouabain/antagonists & inhibitors , Animals , Bipolar Disorder/chemically induced , Bipolar Disorder/metabolism , Disease Models, Animal , Locomotion/drug effects , Male , Mice , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...