Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 11: 1225294, 2023.
Article in English | MEDLINE | ID: mdl-37936886

ABSTRACT

Background: Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24 h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep. Methods: Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to provide mechanical ventilation in utero. At 112 ± 1 d gestation, fetuses received either mechanical ventilation (VENT; n = 7; 3 ml/kg) for 24 h, or no ventilation (CONT; n = 6). At post-mortem, fetal brainstems were collected for assessment of mRNA and histological markers of inflammation and injury. Results: In utero ventilation (IUV) did not alter any blood-gas parameters. IUV significantly increased systemic IL-6 and IL-8 concentrations over the 24 h period compared to CONT. The number of ameboid microglia within the nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses (p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not significantly higher within the preBötzinger complex (p = 0.067) and retrotrapezoid nucleus and parafacial respiratory group (p = 0.057) in VENT fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells were similar between groups. Gene expression (mRNA) levels of inflammation, injury, cell death and prostaglandin synthesis within the brainstem were similar between groups. Conclusion: Mechanical ventilation induces a systemic inflammatory response with only moderate inflammatory effects within the brainstem respiratory centres of preterm fetal sheep.

2.
J Physiol ; 600(13): 3193-3210, 2022 07.
Article in English | MEDLINE | ID: mdl-35587817

ABSTRACT

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1  h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (• OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral • OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and • OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of • OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and • OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.


Subject(s)
Creatine , Fetal Hypoxia , Animals , Creatine/metabolism , Creatine/pharmacology , Dietary Supplements , Female , Fetal Hypoxia/metabolism , Fetus/metabolism , Glycerol/metabolism , Humans , Hypoxia/metabolism , Lactates , Oxidative Stress , Pregnancy , Pyruvates/metabolism , Sheep , Umbilical Cord/physiology
3.
Cells ; 10(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34831126

ABSTRACT

There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE. METHODS: We reviewed preclinical studies up to 20 September 2021 using PubMed, EMBASE and OVID MEDLINE databases. The SYRCLE risk of bias assessment tool was utilized. RESULTS: Seventeen studies were identified. Dietary creatine was the most common administration route. Cerebral creatine loading was age-dependent with near term/term-equivalent studies reporting higher increases in creatine/phosphocreatine compared to adolescent-adult equivalent studies. Most studies did not control for sex, study long-term histological and functional outcomes, or test creatine post-HI. None of the perinatal studies that suggested benefit directly controlled core body temperature (a known confounder) and many did not clearly state controlling for potential study bias. CONCLUSION: Creatine is a promising neuroprotective intervention for HIE. However, this systematic review reveals key knowledge gaps and improvements to preclinical studies that must be addressed before creatine can be trailed for neuroprotection of the human fetus/neonate.


Subject(s)
Aging/pathology , Creatine/pharmacology , Dietary Supplements , Hypoxia-Ischemia, Brain/pathology , Neuroprotection/drug effects , Animals , Creatine/metabolism , Female , Male , Publication Bias , Risk , Survival Analysis , Time Factors
4.
J Appl Physiol (1985) ; 131(3): 1088-1099, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34382841

ABSTRACT

The aim of this study was to investigate the effects of direct creatine infusion on fetal systemic metabolic and cardiovascular responses to mild acute in utero hypoxia. Pregnant ewes (n = 28) were surgically instrumented at 118 days gestation (dGa). A constant intravenous infusion of creatine (6 mg·kg-1·h-1) or isovolumetric saline (1.5 mL·h-1) began at 121 dGa. After 10 days, fetuses were subjected to 10-min umbilical cord occlusion (UCO) to induce mild global hypoxia (saline-UCO, n = 8; creatine-UCO, n = 7) or sham UCO (saline-control, n = 6; creatine-control, n = 7). Cardiovascular, arterial blood gases and metabolites, and plasma creatine were monitored before, during, and then for 72 h following the UCO. Total creatine content in discrete fetal brain regions was also measured. Fetal creatine infusion increased plasma concentrations fivefold but had no significant effects on any measurement pre-UCO. Creatine did not alter fetal physiology during the UCO or in the early recovery stage, up to 24 h after UCO. During the late recovery stage, 24-72 h after UCO, there was a significant reduction in the arterial oxygen pressure and saturation in creatine fetuses (PUCO × TREATMENT = 0.02 and 0.04, respectively). At 72 h after UCO, significant creatine loading was detected in cortical gray matter, hippocampus, thalamus, and striatum (PTREATMENT = 0.01-0.001). In the striatum, the UCO itself increased total creatine content (PUCO = 0.019). Overall, fetal creatine supplementation may alter oxygen flux following an acute hypoxic insult. Increasing total creatine content in the striatum may also be a fetal adaptation to acute oxygen deprivation.NEW & NOTEWORTHY Direct fetal creatine supplementation increased plasma and cerebral creatine concentrations but did not alter fetal body weight, basal cardiovascular output, or blood chemistry. Creatine-treated fetuses displayed changes to arterial oxygenation 24-72 h after acute global hypoxia. An increase in striatum total creatine levels following UCO was also noted and suggests that increasing creatine tissue availability may be an adaptive response against the effects of hypoxia.


Subject(s)
Creatine , Umbilical Cord , Animals , Dietary Supplements , Female , Fetus , Hypoxia , Pregnancy , Sheep
5.
J Appl Physiol (1985) ; 129(5): 1075-1084, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32909920

ABSTRACT

Positive end-expiratory pressure (PEEP) improves oxygenation in mechanically ventilated preterm neonates by preventing lung collapse. However, high PEEP may alter cerebral blood flow secondarily to the increased intrathoracic pressure, predisposing to brain injury. The precise effects of high PEEP on cerebral hemodynamics in the preterm brain are unknown. We aimed to assess the effect of PEEP on microvessels in the preterm brain by using synchrotron radiation (SR) microangiography, which enables in vivo real-time high-resolution imaging of the cerebral vasculature. Preterm lambs (0.8 gestation, n = 4) were delivered via caesarean section, anesthetized, and ventilated. SR microangiography of the right cerebral hemisphere was performed with iodine contrast administered into the right carotid artery during PEEP ventilation of 5 and 10 cmH2O. Carotid blood flow was measured using an ultrasonic flow probe placed around the left carotid artery. An increase of PEEP from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm) in all four lambs. Additionally, the higher PEEP increased the cerebral contrast transit time in three of the four lambs. Carotid blood flow increased in two lambs, which also had increased carbon dioxide levels during PEEP 10. Our results suggest that PEEP of 10 cmH2O alters the preterm cerebral hemodynamics, with prolonged cerebral blood flow transit and engorgement of small cerebral microvessels likely due to the increased intrathoracic pressure. These microvascular changes are generally not reflected in global assessment of cerebral blood flow or oxygenation.NEW & NOTEWORTHY An increase of positive end-expiratory pressure (PEEP) from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm). This suggests increased intrathoracic pressure due to high PEEP can drive microvessel engorgement in the preterm brain, which may play a role in cerebrovascular injury.


Subject(s)
Brain , Cerebrovascular Circulation , Positive-Pressure Respiration , Synchrotrons , Animals , Brain/radiation effects , Female , Lung , Perfusion , Pregnancy , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...