Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(23): 10081-10087, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33179935

ABSTRACT

Extensive transient absorption studies on hybrid organic-inorganic lead halide perovskites have elucidated many optical properties important for their device performance. Despite the enormous progress, the derivative shaped photoinduced absorption feature in transient spectra that is above the bandgap has many explanations, including the photoinduced Stark effect, where the bandgap is blue shifted due to a local electric field generated by charges. In this work, we employ broad band transient absorption and two-dimensional electronic spectroscopy (2DES) to examine the early transient events after photoexcitation of [CH(NH2)2]0.83Cs0.17PbBr3 (FA0.83Cs0.17PbBr3). 2DES resolves a photomodulation feature at the excitation energy of the exciton, suggesting the presence of a dipole field created by a polaron pair shifting the exciton transition to higher energies. As this polaron pair dissociates over 200 fs, the exciton transition shifts to higher energies over the same time scale, evidenced by the 2DES diagonal energy spectra. Given that the observations are well explained in terms of the Stark effect, our work provides extra grounds to support the Stark effect assignment of the above-gap photoinduced absorption. Furthermore, our study reports on the time scale of charge generation, contributing to the fundamental understanding of mixed-cation lead bromide perovskite photophysics.

2.
Nano Lett ; 17(11): 6863-6869, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28968126

ABSTRACT

One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (VOC) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned VOC from 1.05 to 1.45 V in solar cells.

3.
ACS Nano ; 11(4): 3957-3964, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28332818

ABSTRACT

Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

SELECTION OF CITATIONS
SEARCH DETAIL
...