Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 23447, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873199

ABSTRACT

The emergence of infections by carbapenem resistant Enterobacteriaceae (CRE) pathogens has created an urgent public health threat, as carbapenems are among the drugs of last resort for infections caused by a growing fraction of multi-drug resistant (MDR) bacteria. There is global consensus that new preventive and therapeutic strategies are urgently needed to combat the growing problem of MDR bacterial infections. Here, we report on the efficacy of a novel macrocyclic peptide, minimized theta-defensin (MTD)-12813 in CRE sepsis. MTD12813 is a theta-defensin inspired cyclic peptide that is highly effective against CRE pathogens K. pneumoniae and E. coli in vivo. In mouse septicemia models, single dose administration of MTD12813 significantly enhanced survival by promoting rapid host-mediated bacterial clearance and by modulating pathologic cytokine responses, restoring immune homeostasis, and preventing lethal septic shock. The peptide lacks direct antibacterial activity in the presence of mouse serum or in peritoneal fluid, further evidence for its indirect antibacterial mode of action. MTD12813 is highly stable in biological matrices, resistant to bacterial proteases, and nontoxic to mice at dose levels 100 times the therapeutic dose level, properties which support further development of the peptide as a first in class anti-infective therapeutic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Gram-Negative Bacterial Infections/drug therapy , Klebsiella pneumoniae/drug effects , Animals , Bacterial Infections/drug therapy , Carbapenems/pharmacology , Cytokines/metabolism , Drug Design , Female , Humans , Inflammation , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Peptides/pharmacology , Phagocytosis , Sepsis/blood
2.
Sci Rep ; 9(1): 16905, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729441

ABSTRACT

Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections in hospitalized and immunosuppressed patients. Mortality rates associated with these infections have risen sharply due to the emergence of multidrug resistant (MDR) strains of C. albicans and other Candida spp., highlighting the urgent need of new antifungal therapies. Rhesus theta (θ) defensin-1 (RTD-1), a natural macrocyclic antimicrobial peptide, was recently shown to be rapidly fungicidal against clinical isolates of MDR C. albicans in vitro. Here we found that RTD-1 was rapidly fungicidal against blastospores of fluconazole/caspofungin resistant C. albicans strains, and was active against established C. albicans biofilms in vitro. In vivo, systemic administration of RTD-1, initiated at the time of infection or 24 h post-infection, promoted long term survival in candidemic mice whether infected with drug-sensitive or MDR strains of C. albicans. RTD-1 induced an early (4 h post treatment) increase in neutrophils in naive and infected mice. In vivo efficacy was associated with fungal clearance, restoration of dysregulated inflammatory cytokines including TNF-α, IL-1ß, IL-6, IL-10, and IL-17, and homeostatic reduction in numbers of circulating neutrophils and monocytes. Because these effects occurred using peptide doses that produced maximal plasma concentrations (Cmax) of less than 1% of RTD-1 levels required for in vitro antifungal activity in 50% mouse serum, while inducing a transient neutrophilia, we suggest that RTD-1 mediates its antifungal effects in vivo by host directed mechanisms rather than direct fungicidal activity. Results of this study suggest that θ-defensins represent a new class of host-directed compounds for treatment of disseminated candidiasis.


Subject(s)
Candidiasis/drug therapy , Candidiasis/mortality , Defensins/therapeutic use , Animals , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Candidiasis/immunology , Candidiasis/metabolism , Defensins/pharmacokinetics , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple, Fungal/drug effects , Female , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Macaca mulatta/immunology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Signal Transduction/drug effects , Signal Transduction/immunology , Survival Analysis
3.
Article in English | MEDLINE | ID: mdl-29610196

ABSTRACT

Systemic candidiasis is a growing health care concern that is becoming even more challenging due to the growing frequency of infections caused by multidrug-resistant (MDR) Candida species. Thus, there is an urgent need for new therapeutic approaches to candidiasis, including strategies bioinspired by insights into natural host defense against fungal pathogens. The antifungal properties of θ-defensins, macrocyclic peptides expressed in tissues of Old World monkeys, were investigated against a panel of drug-sensitive and drug-resistant clinical isolates of Candida albicans and non-albicans Candida species. Rhesus θ-defensin 1 (RTD-1), the prototype θ-defensin, was rapidly and potently fungicidal against drug-sensitive and MDR C. albicans strains. Fungal killing occurred by cell permeabilization that was temporally correlated with ATP release and intracellular accumulation of reactive oxygen species (ROS). Killing by RTD-1 was compared with that by histatin 5 (Hst 5), an extensively characterized anticandidal peptide expressed in human saliva. RTD-1 killed C. albicans much more rapidly and at a >200-fold lower concentration than that of Hst 5. Unlike Hst 5, the anticandidal activity of RTD-1 was independent of mitochondrial ATP production. Moreover, RTD-1 was completely resistant to Candida proteases for 2 h under conditions that rapidly and completely degraded Hst 5. MICs and minimum fungicidal concentrations (MFCs) of 14 natural θ-defensins isoforms against drug-resistant C. albicans isolates identified peptides that are more active than amphotericin B and/or caspofungin against fluconazole-resistant organisms, including MDR Candida auris. These results point to the potential of macrocyclic θ-defensins as structural templates for the design of antifungal therapeutics.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candidiasis/drug therapy , Defensins/pharmacology , Amphotericin B/pharmacology , Animals , Candida/isolation & purification , Candidiasis/microbiology , Caspofungin/pharmacology , Drug Resistance, Multiple, Fungal/physiology , Fluconazole/pharmacology , Histatins/pharmacology , Humans , Macaca mulatta , Microbial Sensitivity Tests , Protein Isoforms/pharmacology , Reactive Oxygen Species/metabolism
4.
J Biol Chem ; 293(8): 2725-2734, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29317500

ABSTRACT

Theta-defensins (θ-defensins) are macrocyclic peptides expressed exclusively in granulocytes and selected epithelia of Old World monkeys. They contribute to anti-pathogen host defense responses by directly killing a diverse range of microbes. Of note, θ-defensins also modulate microbe-induced inflammation by affecting the production of soluble tumor necrosis factor (sTNF) and other proinflammatory cytokines. Here, we report that natural rhesus macaque θ-defensin (RTD) isoforms regulate sTNF cellular release by inhibiting TNF-α-converting enzyme (TACE; also known as adisintegrin and metalloprotease 17; ADAM17), the primary pro-TNF sheddase. Dose-dependent inhibition of cellular TACE activity by RTDs occurred when leukocytes were stimulated with live Escherichia coli cells as well as numerous Toll-like receptor agonists. Moreover, the relative inhibitory potencies of the RTD isoforms strongly correlated with their suppression of TNF release by stimulated blood leukocytes and THP-1 monocytes. RTD isoforms also inhibited ADAM10, a sheddase closely related to TACE. TACE inhibition was abrogated by introducing a single opening in the RTD-1 backbone, demonstrating that the intact macrocycle is required for enzyme inhibition. Enzymologic analyses showed that RTD-1 is a fast binding, reversible, non-competitive inhibitor of TACE. We conclude that θ-defensin-mediated inhibition of pro-TNF proteolysis by TACE represents a rapid mechanism for the regulation of sTNF and TNF-dependent inflammatory pathways. Molecules with structural and functional features mimicking those of θ-defensins may have clinical utility as TACE inhibitors for managing TNF-driven diseases.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Defensins/pharmacology , Leukocytes/drug effects , Monocytes/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , ADAM10 Protein/antagonists & inhibitors , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line , Chlorocebus aethiops , Colon/drug effects , Colon/immunology , Colon/metabolism , Defensins/chemistry , Escherichia coli/immunology , Escherichia coli/physiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharides/toxicity , Macaca mulatta , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Monocytes/immunology , Monocytes/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/pharmacology , Proteolysis/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/metabolism
5.
PLoS One ; 12(11): e0187868, 2017.
Article in English | MEDLINE | ID: mdl-29145473

ABSTRACT

θ-defensins constitute a family of macrocyclic peptides expressed exclusively in Old World monkeys. The peptides are pleiotropic effectors of innate immunity, possessing broad spectrum antimicrobial activities and immunoregulatory properties. Here we report that rhesus θ-defensin 1 (RTD-1) is highly effective in arresting and reversing joint disease in a rodent model of rheumatoid arthritis (RA). Parenteral RTD-1 treatment of DA/OlaHsd rats with established pristane-induced arthritis (PIA) rapidly suppressed joint disease progression, restored limb mobility, and preserved normal joint architecture. RTD-1 significantly reduced joint IL-1ß levels compared with controls. RTD-1 dose-dependently inhibited fibroblast-like synoviocyte (FLS) invasiveness and FLS IL-6 production. Consistent with the inhibition of FLS invasiveness, RTD-1 was a potent inhibitor of arthritogenic proteases including ADAMs 17 and 10 which activate TNFα, and inhibited matrix metalloproteases, and cathepsin K. RTD-1 was non-toxic, non-immunogenic, and effective when administered as infrequently as once every five days. Thus θ-defensins, which are absent in humans, have potential as retroevolutionary biologics for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid/prevention & control , Defensins/pharmacology , Animals , Arthritis, Rheumatoid/immunology , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley
6.
Innate Immun ; 21(1): 17-29, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24345876

ABSTRACT

Antibiotic-resistant bacterial pathogens threaten public health. Because many antibiotics target specific bacterial enzymes or reactions, corresponding genes may mutate under selection and lead to antibiotic resistance. Accordingly, antimicrobials that selectively target overall microbial cell integrity may offer alternative approaches to therapeutic design. Naturally occurring mammalian α- and θ-defensins are potent, non-toxic microbicides that may be useful for treating infections by antibiotic-resistant pathogens because certain defensin peptides disrupt bacterial, but not mammalian, cell membranes. To test this concept, clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), including vancomycin heteroresistant strains, and ciprofloxacin-resistant Pseudomonas aeruginosa (Cip(R)-PA) were tested for sensitivity to α-defensins Crp-4, RMAD-4 and HNPs 1-3, and to RTD-1, macaque θ-defensin-1. In vitro, 3 µM Crp-4, RMAD-4 and RTD-1 reduced MRSA cell survival by 99%, regardless of vancomycin susceptibility. For PA clinical isolates that differ in fluoroquinolone resistance and virulence phenotype, peptide efficacy was independent of strain ciprofloxacin resistance, site of isolation or virulence factor expression. Thus, Crp-4, RMAD-4 and RTD-1 are effective in vitro antimicrobials against clinical isolates of MRSA and Cip(R)-PA, perhaps providing templates for development of α- and θ-defensin-based microbicides against antibiotic resistant or virulent infectious agents.


Subject(s)
Defensins/pharmacology , Drug Resistance, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , alpha-Defensins/pharmacology , Amino Acid Sequence , Bacteremia/microbiology , Bacterial Infections/microbiology , Ciprofloxacin/pharmacology , Defensins/genetics , Microbial Sensitivity Tests , Molecular Sequence Data , Vancomycin Resistance , alpha-Defensins/genetics
7.
PLoS One ; 7(12): e51337, 2012.
Article in English | MEDLINE | ID: mdl-23236475

ABSTRACT

Theta-defensins (θ-defensins) are macrocyclic antimicrobial peptides expressed in leukocytes of Old World monkeys. The peptides are broad spectrum microbicides in vitro and numerous θ-defensin isoforms have been identified in granulocytes of rhesus macaques and Olive baboons. Several mammalian α- and ß-defensins, genetically related to θ-defensins, have proinflammatory and immune-activating properties that bridge innate and acquired immunity. In the current study we analyzed the immunoregulatory properties of rhesus θ-defensins 1-5 (RTDs 1-5). RTD-1, the most abundant θ-defensin in macaques, reduced the levels of TNF, IL-1α, IL-1ß, IL-6, and IL-8 secreted by blood leukocytes stimulated by several TLR agonists. RTDs 1-5 suppressed levels of soluble TNF released by bacteria- or LPS-stimulated blood leukocytes and THP-1 monocytes. Despite their highly conserved conformation and amino acid sequences, the anti-TNF activities of RTDs 1-5 varied by as much as 10-fold. Systemically administered RTD-1 was non-toxic for BALB/c mice, and escalating intravenous doses were well tolerated and non-immunogenic in adult chimpanzees. The peptide was highly stable in serum and plasma. Single dose administration of RTD-1 at 5 mg/kg significantly improved survival of BALB/c mice with E. coli peritonitis and cecal ligation-and-puncture induced polymicrobial sepsis. Peptide treatment reduced serum levels of several inflammatory cytokines/chemokines in bacteremic animals. Collectively, these results indicate that the anti-inflammatory properties of θ-defensins in vitro and in vivo are mediated by the suppression of numerous proinflammatory cytokines and blockade of TNF release may be a primary effect.


Subject(s)
Defensins/immunology , Protein Isoforms/immunology , Sepsis/drug therapy , Sepsis/immunology , Animals , Chromatography, High Pressure Liquid , Cytokines/blood , Defensins/administration & dosage , Defensins/genetics , Defensins/therapeutic use , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Neutralization Tests , Pan troglodytes , Protein Isoforms/administration & dosage , Protein Isoforms/genetics , Protein Isoforms/therapeutic use
8.
PLoS One ; 7(3): e32469, 2012.
Article in English | MEDLINE | ID: mdl-22448222

ABSTRACT

The azurophilic granules of human neutrophils contain four α-defensins called human neutrophil peptides (HNPs 1-4). HNPs are tridisulfide-linked antimicrobial peptides involved in the intracellular killing of organisms phagocytosed by neutrophils. The peptides are produced as inactive precursors (proHNPs) which are processed to active microbicides by as yet unidentified convertases. ProHNP1 was expressed in E. coli and the affinity-purified propeptide isolated as two species, one containing mature HNP1 sequence with native disulfide linkages ("folded proHNP1") and the other containing non-native disulfide linked proHNP1 conformers (misfolded proHNP1). Native HNP1, liberated by CNBr treatment of folded proHNP1, was microbicidal against Staphylococcus aureus, but the peptide derived from misfolded proHNP1 was inactive. We hypothesized that neutrophil elastase (NE), proteinase 3 (PR3) or cathepsin G (CG), serine proteases that co-localize with HNPs in azurophil granules, are proHNP1 activating convertases. Folded proHNP1 was converted to mature HNP1 by both NE and PR3, but CG generated an HNP1 variant with an N-terminal dipeptide extension. NE and PR3 cleaved folded proHNP1 to produce a peptide indistinguishable from native HNP1 purified from neutrophils, and the microbicidal activities of in vitro derived and natural HNP1 peptides were equivalent. In contrast, misfolded proHNP1 conformers were degraded extensively under the same conditions. Thus, NE and PR3 possess proHNP1 convertase activity that requires the presence of the native HNP1 disulfide motif for high fidelity activation of the precursor in vitro.


Subject(s)
Leukocyte Elastase/metabolism , Myeloblastin/metabolism , Protein Folding , Recombinant Proteins/metabolism , Staphylococcus aureus/metabolism , alpha-Defensins/metabolism , Amino Acid Sequence , Blotting, Western , Cathepsin G/metabolism , Chromatography, High Pressure Liquid , Humans , Microbial Sensitivity Tests , Microbial Viability , Molecular Sequence Data , Protein Precursors , Recombinant Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/growth & development , alpha-Defensins/genetics
9.
J Leukoc Biol ; 89(2): 283-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21084627

ABSTRACT

Mammalian defensins are cationic, antimicrobial peptides that play a central role in innate immunity. The peptides are composed of three structural subfamilies: α-, ß-, and θ-defensins. θ-defensins are macrocyclic octadecapeptides expressed only in Old World monkeys and orangutans and are produced by the pair-wise, head-to-tail splicing of nonapeptides derived from their respective precursors. The existence of three active θ-defensin genes predicts that six different RTDs (1-6) are produced in this species. In this study, we isolated and quantified RTDs 1-6 from the neutrophils of 10 rhesus monkeys. RTD-1 was the most abundant θ-defensin, constituting ~50% of the RTD content; total RTD content varied by as much as threefold between animals. All peptides tested were microbicidal at ∼1 µM concentrations. The contribution of θ-defensins to macaque neutrophil antimicrobial activity was assessed by analyzing the microbicidal properties of neutrophil granule extracts after neutralizing θ-defensin content with a specific antibody. θ-defensin neutralization markedly reduced microbicidal activities of the corresponding extracts. Macaque neutrophil granule extracts had significantly greater microbicidal activity than those of human neutrophils, which lack θ-defensins. Supplementation of human granule extracts with RTD-1 markedly increased the microbicidal activity of these preparations, further demonstrating a prominent microbicidal role for θ-defensins.


Subject(s)
Cytoplasmic Granules/immunology , Cytoplasmic Granules/microbiology , Defensins/physiology , Neutrophils/immunology , Neutrophils/microbiology , Animals , Basophils/immunology , Basophils/metabolism , Basophils/microbiology , Cell Extracts/genetics , Cell Extracts/immunology , Cell Extracts/metabolism , Cytoplasmic Granules/metabolism , Defensins/biosynthesis , Defensins/genetics , Female , Humans , Macaca mulatta , Male , Neutrophils/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Precursors/biosynthesis , Protein Precursors/genetics , Protein Precursors/physiology
10.
J Biol Chem ; 283(51): 35869-77, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-18930922

ABSTRACT

The oral cavity is an environment challenged by a large variety of pathogens. Consequently, the antimicrobial peptides expressed in that environment are interesting as they evolved to defend against a broad spectrum of bacteria and fungi. Here we report the discovery of new alpha-defensins from rhesus macaque oral mucosa and determine the first alpha-defensin structure from that species. The new peptides were identified by sequencing of reverse transcriptase-PCR products obtained from oral mucosal tissues, disclosing three mucosal alpha-defensins, termed rhesus macaque oral alpha-defensins (ROADs). The peptide corresponding to fully processed ROAD-1 was synthesized, subjected to folding/oxidation conditions, and purified. ROAD-1 was active against Staphylococcus aureus, Escherichia coli, and Candida albicans in a concentration-dependent manner. We determined the structure of ROAD-1 using NMR spectroscopy and find that the synthetic peptide adopts the canonical disulfide pairing and alpha-defensin fold. The antimicrobial mechanism of defensins has been correlated with their ability to disrupt and permeabilize the cell envelope, activities that depend on the surface features of the folded peptide. Although ROAD-1 maintains the defensin fold, the oral defensin displays distinct surface features when compared with other alpha-defensin structures.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Candida albicans/growth & development , Escherichia coli/growth & development , Staphylococcus aureus/growth & development , alpha-Defensins/genetics , alpha-Defensins/pharmacology , Animals , Anti-Infective Agents/immunology , Macaca mulatta , Mouth Mucosa/immunology , Protein Folding , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Structure-Activity Relationship , alpha-Defensins/chemical synthesis , alpha-Defensins/immunology
11.
Infect Immun ; 76(12): 5883-91, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18852242

ABSTRACT

Theta-defensins are macrocyclic antimicrobial peptides that were previously isolated from leukocytes of a single species, the rhesus macaque. We now report the characterization of baboon theta-defensins (BTDs) expressed in bone marrow and peripheral blood leukocytes. Four cDNAs encoding theta-defensin precursors were characterized, allowing for the prediction of 10 theoretical theta-defensins (BTD-1 to BTD-10) produced by binary, head-to-tail splicing of nonapeptides excised from paired precursors. Five of the predicted theta-defensins were purified from baboon leukocytes, and synthetic versions of each were prepared. Anti-theta-defensin antibody localized the peptides in circulating neutrophils and monocytes and in immature and mature myeloid elements in bone marrow. Each of the BTDs possessed antimicrobial activity against bacterial and fungal test organisms in vitro. Peptide activities varied markedly despite a high degree of sequence conservation among the theta-defensins tested. Thus, baboons express numerous theta-defensins which appear to differentially contribute to host defense against diverse pathogens.


Subject(s)
Defensins/genetics , Defensins/immunology , Defensins/isolation & purification , Leukocytes/immunology , Papio/immunology , Amino Acid Sequence , Animals , Blotting, Western , Humans , Immunohistochemistry , Molecular Sequence Data , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
12.
Antimicrob Agents Chemother ; 52(3): 944-53, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18160518

ABSTRACT

Rhesus macaque theta-defensins (RTDs) are unique macrocyclic antimicrobial peptides. The three RTDs (RTD 1-3), isolated from macaque leukocytes, have broad-spectrum antimicrobial activities in vitro and share certain structural features with acyclic porcine protegrins, which are microbicidal peptides of the cathelicidin family. To understand the structural features that confer the respective cytocidal properties to theta-defensins and protegrins, we determined and compared the biological properties of RTD 1-3 and protegrin 1 (PG-1) in assays for antimicrobial activity, bacterial membrane permeabilization, and toxicity to human cells. RTD 1-3 and PG-1 had similar microbicidal potencies against Escherichia coli, Staphylococcus aureus, and Candida albicans in low-ionic-strength (10 mM) buffers at pH 7.4. The inclusion of physiologic sodium chloride partially inhibited the microbicidal activities of the RTDs, and the degree of inhibition depended on the buffer used in the assay. Similarly, the inclusion of 10% normal human serum partially antagonized the bactericidal activities of all four peptides. In contrast, the microbicidal activities of PG-1 and RTD 1-3 against E. coli were unaffected by physiologic concentrations of calcium chloride and magnesium chloride. Treatment of E. coli ML35 cells with RTD 1-3 or PG-1 rapidly rendered the bacteria permeable to omicron-nitrophenyl-beta-D-galactopyranoside, and this was accompanied by the rapid entry of the RTDs. Finally, although PG-1 was toxic to human fibroblasts and caused a marked lysis of erythrocytes, the RTDs were not cytotoxic or hemolytic. Thus, compared to PG-1, RTD 1-3 possess substantially greater cytocidal selectivity against microbes. Surprisingly, the low cytotoxicity of the RTDs did not depend on the peptides' cyclic conformation.


Subject(s)
Anti-Infective Agents , Candida albicans/drug effects , Defensins/pharmacology , Escherichia coli/drug effects , Fibroblasts/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Cell Line , Cell Membrane Permeability , Colony Count, Microbial , Defensins/toxicity , Humans , Macaca mulatta , Microbial Sensitivity Tests , Peptides, Cyclic/pharmacology , Peptides, Cyclic/toxicity
13.
J Immunol ; 176(2): 1154-62, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16394004

ABSTRACT

Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.


Subject(s)
Carrier Proteins/immunology , Carrier Proteins/metabolism , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Carrier Proteins/isolation & purification , Carrier Proteins/pharmacology , Cattle , Granulocytes/immunology , Granulocytes/metabolism , Immunity, Innate , Lipopolysaccharides/metabolism , Listeria monocytogenes/drug effects , Microscopy, Immunoelectron , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/ultrastructure , Peptidoglycan/metabolism , Protein Binding , Salmonella typhimurium/drug effects
14.
AIDS ; 17(14): F23-32, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14502030

ABSTRACT

BACKGROUND: CD8 T cells from healthy HIV-infected individuals inhibit HIV replication in infected CD4 T cells by a non-cytotoxic mechanism mediated by a soluble CD8 cell antiviral factor, CAF. Recently, the antimicrobial peptides, alpha-defensins, were reported to constitute CAF. OBJECTIVE: To examine the antiviral activity of alpha-defensins and address their potential role in CD8 cell non-cytotoxic antiviral responses. DESIGN AND METHODS: A purified mixture of human neutrophil proteins (HNP) 1-3 (alpha-defensins) was used to examine the effect of alpha-defensins on HIV virions and on HIV replication in CD4 cells treated prior to or post infection. alpha-Defensin expression was analyzed at the RNA and protein level in CD8 cells as well as in various other cell types. Antibodies to the defensins were tested for their ability to inhibit CAF activity in CD8 cell culture fluids. RESULTS: The alpha-defensins exhibited anti-HIV activity on at least two levels: directly inactivating virus particles; and affecting the ability of target CD4 cells to replicate the virus. However, while we could demonstrate alpha-defensins in neutrophils and monocytes, we found no evidence for the production of these peptides by CD8 T cells. No messenger RNA encoding these proteins was detected in purified CD8 T cells, nor did these cells produce intracellular or extracellular alpha-defensin peptides. Moreover, antibodies specific for human alpha-defensins 1, 2, and 3 did not block the antiviral activity of CAF-active CD8 cell culture fluids. CONCLUSIONS: The alpha-defensins are not produced by CD8 cells but unexpectedly were found to be expressed in monocytes. alpha-Defensins can have anti-HIV activity but are not CD8 cell antiviral factors.


Subject(s)
Antiviral Agents/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , alpha-Defensins/immunology , CD4 Antigens/immunology , Cells, Cultured , HIV/immunology , HIV/physiology , Humans , Immunohistochemistry/methods , Monocytes/immunology , Neutrophils/immunology , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Virion/immunology , Virus Replication/immunology , alpha-Defensins/biosynthesis
15.
J Biol Chem ; 277(5): 3079-84, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11675394

ABSTRACT

Rhesus theta-defensin 1 (RTD-1) is a unique tridisulfide, cyclic antimicrobial peptide formed by the ligation of two 9-residue sequences derived from heterodimeric splicing of similar 76-amino acid, alpha-defensin-related precursors, termed RTD1a and RTD1b (Tang, Y. Q., Yuan, J., Osapay, G., Osapay, K., Tran, D., Miller, C. J., Ouellette, A. J., and Selsted, M. E. (1999) Science 286, 498-502). The structures of RTD-2 and RTD-3 were predicted to exist if homodimeric splicing of the RTD1a and RTD1b occurs in vivo. Western blotting disclosed the presence of putative theta-defensins, distinct from RTD-1, in leukocyte extracts. Two new theta-defensins, RTD-2 and RTD-3, were purified by reverse-phase high performance liquid chromatography and characterized by amino acid analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, and comparison to the synthetic standards. RTD-2 and RTD-3 are the predicted homodimeric splicing products of RTD1b and RTD1a, respectively. The cellular abundances of RTD-1, -2, and -3 were 29:1:2, indicating that there is a preference for the heterodimeric ligation that generates RTD-1. RTD-1, -2, and -3 had similar antimicrobial activities against Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans, whereas the activity of RTD-2 against Escherichia coli was 2-3-fold less than those of RTD-1 and RTD-3. Equal amounts of each theta-defensin bound to E. coli cells, indicating that the differences in antibacterial activities are the result of post-binding processes.


Subject(s)
Anti-Bacterial Agents/blood , Defensins/blood , Leukocytes/physiology , Peptides, Cyclic/blood , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Defensins/chemistry , Defensins/pharmacology , Dimerization , Electrophoresis, Polyacrylamide Gel , Escherichia coli/physiology , Macaca mulatta , Molecular Sequence Data , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protein Binding , Sequence Alignment , Sequence Homology, Amino Acid , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...