Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 218(9): 2982-3001, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31320392

ABSTRACT

The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors.


Subject(s)
Dyneins/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Cell Line, Tumor , Dyneins/genetics , Humans , Kinesins/genetics , Microtubule-Associated Proteins/genetics , Microtubules/genetics
2.
Cell ; 170(6): 1197-1208.e12, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886386

ABSTRACT

Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Cryoelectron Microscopy , Dyneins/chemistry , Humans , Microtubule-Associated Proteins/chemistry , Models, Molecular , Molecular Motor Proteins/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment
3.
Elife ; 62017 07 18.
Article in English | MEDLINE | ID: mdl-28718761

ABSTRACT

In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase ('BioID') to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires 'activators', of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos.


Subject(s)
Carrier Proteins/metabolism , Cell Movement , Cytoplasmic Dyneins/metabolism , Dynactin Complex/metabolism , Cell Line , Cytological Techniques/methods , Humans , Microtubules/metabolism , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...