Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Poult Sci ; 60(1): 2023004, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36756047

ABSTRACT

Ornithine has been identified as a potential satiety signal in the brains of neonatal chicks. We hypothesized that brain nutrient signals such as amino acids and appetite-related neuropeptides synergistically regulate food intake. To test this hypothesis, we investigated the interaction between neuropeptide Y (NPY) and ornithine in the control of feeding behavior in chicks and the associated central and peripheral amino acid metabolic processes. Five-day-old chicks were intracerebroventricularly injected with saline, NPY (375 pmol), or NPY plus ornithine (2 or 4 µmol) at 10 µl per chick, and then subjected to ad libitum feeding conditions; food intake was monitored for 30 min after injection. Brain and plasma samples were collected after the experiment to determine free amino acid concentrations. Co-injection of NPY and ornithine significantly attenuated the orexigenic effect induced by NPY in a dose-dependent manner. Central NPY significantly decreased amino adipic acid, asparagine, γ-aminobutyric acid, leucine, phenylalanine, tyrosine, and isoleucine levels, but significantly increased lysine levels in the brain. Co-injection of NPY and ornithine significantly increased ornithine and proline levels in all examined brain regions, but decreased diencephalic tryptophan and glycine levels compared with those of the control and NPY-alone groups. Co-injection of NPY and high-dose ornithine significantly decreased methionine levels in all brain regions. Central NPY significantly suppressed the plasma concentrations of amino acids, including proline, asparagine, methionine, phenylalanine, tyrosine, leucine, isoleucine, glycine, glutamine, alanine, arginine, and valine, and this reduction was greater when NPY was co-injected with ornithine. These results suggest that brain ornithine interacts with NPY to regulate food intake in neonatal chicks. Furthermore, central NPY may induce an anabolic effect that is modified by co-injection with ornithine.

2.
Amino Acids ; 55(2): 183-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436082

ABSTRACT

Brain amino acid metabolism has been reported to regulate body temperature, feeding behavior and stress response. Central injection of taurine induced hypothermic and anorexigenic effects in chicks. However, it is still unknown how the amino acid metabolism is influenced by the central injection of taurine. Therefore, the objective of this study was to investigate the changes in brain and plasma free amino acids following central injection of taurine. Five-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). Central taurine increased tryptophan concentrations in the diencephalon, and decreased tyrosine in the diencephalon, brainstem, cerebellum, telencephalon and plasma at 30 min post-injection. Taurine was increased in all the brain parts after ICV taurine. Although histidine and cystathionine concentrations were increased in the diencephalon and brainstem, several amino acids such as isoleucine, arginine, methionine, phenylalanine, glutamic acid, asparagine, proline, and alanine were reduced following central injection of taurine. All amino acid concentrations were decreased in the plasma after ICV taurine. In conclusion, central taurine quickly changes free amino acid concentrations in the brain and plasma, which may have a role in thermoregulation, food intake and stress response in chicks.


Subject(s)
Amino Acids , Taurine , Male , Animals , Amino Acids/metabolism , Taurine/pharmacology , Brain/metabolism , Proline/metabolism , Arginine/metabolism , Chickens/metabolism
3.
Front Vet Sci ; 9: 1049910, 2022.
Article in English | MEDLINE | ID: mdl-36467658

ABSTRACT

Thermal manipulation (TM) of incubation temperature has been demonstrated to alter metabolism and post-hatch thermotolerance in broiler strains (meat-type chickens). Fewer reports were focused on layer-type chickens and there was no report on amino acid metabolism during TM in layer-type embryos. In this study, we investigated the effects of TM on embryonic development, hepatic amino acid metabolism, and hatching performance in layer-type chickens. Fertilized eggs were incubated under control thermoneutral temperature (CT, 37.6°C) and TM with high temperature (TMH, 39°C, 8 h/day) or low temperature (TML, 20°C, 1 h/day) from embryonic day (ED) 8 to ED 15. The embryonic weight and relative embryonic weight (yolk-free embryonic weight to the initial egg weight) significantly declined in the TML group at ED 13 (P < 0.01) and ED 16 (P < 0.0001), and were significantly increased (P < 0.001) in the TMH group at ED 16, in comparison with the embryos in the CT group. The concentrations of all hepatic free amino acids were significantly increased (P < 0.01) with embryonic development. Interestingly, TMH and TML caused similar effects on hepatic amino acid metabolism, in which most of the essential and non-essential amino acids were significantly declined (P < 0.05) under TM treatments at ED 13 but not affected at ED 16. Until hatching, TML, but not TMH, caused a significant (P < 0.05) delay (31-38 min/day from ED 8) in incubation duration. The hatchability in the TML group was lower than the other two groups, which indicated that 20°C as cold stimulation was not suitable for layer embryos. The body weight, yolk weight, yolk-free body mass, and chick quality were not affected by TM treatments. However, the relative weight of the liver, but not the heart, was significantly reduced (P < 0.05) at hatching by TML treatment. In conclusion, TML, but not TMH, caused to delay in embryogenesis and affected the internal organ of chicks at hatch. Similar changes in amino acid metabolism under TMH and TML indicated that thermal stress induced by both high and low extreme ambient temperatures influences embryonic amino acid metabolism in a similar fashion in layer-type embryos.

4.
Eur J Pharmacol ; 928: 175092, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35697149

ABSTRACT

Brain monoamines are reported to regulate body temperature and food intake. The objective of this study was to investigate the mechanism of brain monoamine metabolism in taurine-induced hypothermia and appetite suppression. In Experiment 1, 5-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). In Experiment 2, the chicks were ICV injected with saline, taurine, fusaric acid (dopamine-ß-hydroxylase inhibitor: 558 nmol), or taurine with fusaric acid. In Experiment 3, the chicks were ICV injected with saline, taurine, para-chlorophenylalanine (PCPA, tryptophan hydroxylase inhibitor: 400 nmol), or taurine with PCPA. In Experiment 4, the chicks were ICV injected with saline, taurine, clorgyline (monoamine oxidase inhibitor: 81 nmol), or taurine with clorgyline. Central taurine lowered rectal temperature at 30 min post-injection and increased norepinephrine in the brainstem and its metabolite 3-methoxy-4-hydroxyphenylglycol in both the diencephalon and brainstem. Similarly, taurine treatment induced increases in serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid in the diencephalon. Fusaric acid completely and PCPA partially, but not clorgyline, attenuated taurine-induced hypothermia. The anorexigenic effect of taurine was partially attenuated by PCPA, but not fusaric acid nor clorgyline. In conclusion, central taurine activates dopamine-ß-hydroxylase and tryptophan hydroxylase to produce norepinephrine and 5-HT, and then induces hypothermia, but 5-HT alone may be linked with taurine-induced anorexia in chicks.


Subject(s)
Hypothermia , Animals , Chickens/metabolism , Dopamine/pharmacology , Eating , Fenclonine/pharmacology , Hypothermia/chemically induced , Male , Norepinephrine/pharmacology , Serotonin/metabolism , Taurine/pharmacology , Tryptophan Hydroxylase/pharmacology
5.
Neurosci Lett ; 784: 136749, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35728682

ABSTRACT

Previously it was found that mRNA expression of neuropeptide Y (NPY) was increased in the chicken brain under heat stress. NPY has also been reported as an anti-stress factor to regulate brain functions in heat-exposed chicks. However, to the best of our knowledge, there is no report on the action of central NPY in the immune organs under heat stress. The aim of this study was to examine whether central injection of NPY can regulate heat stress response in the spleen and liver. After intracerebroventricular (ICV) injection of NPY, chicks were exposed to control thermoneutral temperature (CT: 30 ± 1 °C) or high ambient temperature (HT: 35 ± 1 °C) chambers for 60 min. Central injection of NPY caused lowering in rectal temperature under CT, but not under HT. Moreover, ICV injection of NPY caused a significant lower mRNA expression of heat-shock protein-70 and higher expression of glutathione synthase in the spleen, but not liver. Furthermore, plasma uric acid concentrations were significantly increased by the ICV injection of NPY in chicks under HT. These results indicate that brain NPY may contribute to attenuate the intracellular heat stress response and enhance antioxidative status in the immune organ, spleen in chicks.


Subject(s)
Chickens , Neuropeptide Y , Animals , Antioxidants/pharmacology , Chickens/metabolism , Heat-Shock Response , Injections, Intraventricular , RNA, Messenger/metabolism , Spleen/metabolism
6.
Metabolites ; 12(1)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35050205

ABSTRACT

The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 µmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, ß-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.

7.
Neuropeptides ; 89: 102169, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34229214

ABSTRACT

The role of the monoaminergic system in the feeding behavior of neonatal chicks has been reported, but the functional relationship between the metabolism of monoamines and appetite-related neuropeptides is still unclear. This study aimed to investigate the changes in catecholamine and indolamine metabolism in response to the central action of neuropeptide Y (NPY) in different feeding statuses and the underlying mechanisms. In Experiment 1, the diencephalic concentrations of amino acids and monoamines following the intracerebroventricular (ICV) injection of NPY (375 pmol/10 µl/chick), saline solution under ad libitum, and fasting conditions for 30 min were determined. Central NPY significantly decreased L-tyrosine concentration, the precursor of catecholamines under feeding condition, but not under fasting condition. Central NPY significantly increased dopamine metabolites, including 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). The concentration of 3-methoxy-4-hydroxyphenylglycol was significantly reduced under feeding condition, but did not change under fasting condition by NPY. However, no effects of NPY on indolamine metabolism were found in either feeding status. Therefore, the mechanism of action of catecholamines with central NPY under feeding condition was elucidated in Experiment 2. Central NPY significantly attenuated diencephalic gene expression of catecholaminergic synthetic enzymes, such as tyrosine hydroxylase, L-aromatic amino acid decarboxylase, and GTP cyclohydrolase I after 30 min of feeding. In Experiment 3, co-injection of α-methyl-L-tyrosine, an inhibitor of tyrosine hydroxylase with NPY, moderately attenuated the orexigenic effect of NPY, accompanied by a significant positive correlation between food intake and HVA levels. In Experiment 4, there was a significant interaction between NPY and clorgyline, an inhibitor of monoamine oxidase A with ICV co-injection which implies that co-existence of NPY and clorgyline enhances the orexigenic effect of NPY. In conclusion, central NPY modifies a part of catecholamine metabolism, which is illustrated by the involvement of dopamine transmission and metabolism under feeding but not fasting conditions.


Subject(s)
Brain/drug effects , Catecholamines/metabolism , Dopamine/metabolism , Eating/drug effects , Neuropeptide Y/pharmacology , Tyrosine/metabolism , Animals , Brain/metabolism , Chickens , Feeding Behavior/drug effects
8.
J Therm Biol ; 98: 102905, 2021 May.
Article in English | MEDLINE | ID: mdl-34016332

ABSTRACT

The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.


Subject(s)
Chickens/physiology , Eating , Hypothermia/physiopathology , Receptors, GABA-A/physiology , Temperature , Animals , Biogenic Monoamines/metabolism , Blood Glucose/analysis , Body Temperature , Brain/metabolism , Chickens/blood , Chickens/genetics , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hypothermia/blood , Hypothermia/chemically induced , Hypothermia/genetics , Injections , Male , Receptors, GABA-A/genetics , Taurine , Uric Acid/blood
9.
Biochem Biophys Res Commun ; 533(4): 965-970, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33008589

ABSTRACT

Central administration of L-arginine was reported to attenuate stress responses in neonatal chicks. The present study aimed to elucidate the differential effects of centrally administered L-arginine and its enantiomer, D-arginine, on the stress response in chicks and the associated mechanisms. Intracerebroventricular injection of L-arginine attenuated acute isolation stress by inducing sleep-like behavior, while central administration of D-arginine potentiated the stress response, reducing the time spent standing motionless with eyes open and increasing distress vocalizations compared to the control. The brain concentrations of amino acids and monoamines following L- and D-arginine administration during stress were also determined. L-Arginine significantly increased the mesencephalic L-glutamine concentration. D-Arginine administration did not affect the levels of L-arginine or other amino acids in the examined brain regions. 3,4-Dihydroxyphenylacetic acid (DOPAC) level and dopamine (DA) metabolic rate (DOPAC/DA) were significantly higher in the diencephalon in the D-arginine group compared to the L-arginine group, while the mesencephalic DA level was significantly lower in the D-arginine group compared to the control. In vitro experiment using the brain slice culture demonstrated that extracellular perfusion of D-arginine significantly elevated the mRNA expression level of monoamine oxidase B, the major enzyme involved in DA metabolism, in the locus coeruleus region of the brainstem. In conclusion, in neonatal chicks, central administration of D-arginine exerted a stimulant effect on the stress response, in contrast to the stress-attenuating effects of L-arginine, partly through an effect on brain dopaminergic metabolism and not through competition with the L-stereoisomer.


Subject(s)
Arginine/administration & dosage , Behavior, Animal/drug effects , Stress, Physiological/drug effects , Amino Acids/metabolism , Animals , Animals, Newborn , Arginine/chemistry , Arginine/metabolism , Behavior, Animal/physiology , Brain/drug effects , Brain/metabolism , Catecholamines/metabolism , Chickens , Injections, Intraventricular , Male , Metabolic Networks and Pathways/drug effects , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Social Isolation , Stereoisomerism , Stress, Physiological/physiology , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology
10.
Amino Acids ; 51(8): 1129-1152, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31302780

ABSTRACT

Animals at the neonatal stage have to eat more to support better growth and health. However, it is difficult to understand the mechanism of feeding during an early stage of life in the brain of the rodent model. Chickens are precocial and they can look for their food by themselves right after hatching. Neonatal chicks have a relatively large-sized brain; therefore, the drugs are easy to administer centrally and changes in food intake can be clearly monitored. Sleeping status, which affects food intake, can be estimated from the posture. The closest vertebrate outgroup to mammals is birds, but it was reported that the organization of the human genome is closer to that of the chicken than the mouse. Thus, it is important to understand the central mechanism of feeding regulation in the neonatal chicks. In neuropeptides, the number of candidates as the orexigenic factor was less than those as the anorexigenic factor, even at an early growth stage. Some of the neuropeptides have reverse effects, e.g., ghrelin and prolactin releasing peptides, or no effects compared to the effects confirmed in mammals. Some of the genetic differences between meat-type (broiler) and layer-type chickens would explain the difference in food intake. On the other hand, it was difficult to explain the feeding mechanism by neuropeptides alone, as neonatal chicks have a repeated feeding, sleeping, and resting behavior within a short period. Some of the amino acids and their metabolites act centrally to regulate feeding with sedative and hypnotic effects. In conclusion, endogenous neuropeptides and endogenous and/or exogenous nutrients like amino acids collaborate to regulate feeding behavior in neonatal chicks.


Subject(s)
Amino Acids/pharmacology , Eating/physiology , Feeding Behavior/physiology , Neuropeptides/pharmacology , Animals , Animals, Newborn , Chickens , Eating/drug effects , Feeding Behavior/drug effects
11.
J Poult Sci ; 56(4): 285-289, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-32055226

ABSTRACT

Recently, we showed that oral administration of crystallized L-citrulline (L-Cit) caused hypothermia under a control thermoneutral temperature (CT) and provided thermotolerance under high ambient temperature (HT) in chicks. The aim of this study was to clarify whether oral administration of a medium containing L-Cit-producing live bacteria can reduce body temperature in chicks under CT. In Experiment 1, 7-day-old chicks were orally administered either a medium (containing mainly L-Cit-producing live bacteria and 277 mM L-Cit) or an equimolar amount of L-Cit to determine their effects on body temperature (acute treatment). In Experiment 2, chicks were subjected to the same treatment from 7 to 13 days of age (chronic treatment). Rectal and surface body temperatures were recorded daily after 1 h of treatment. Both acute and chronic oral administration of the medium, but not of the equimolar amount of L-Cit, significantly reduced the rectal and surface body temperatures of the chicks. Chronic administration of the medium resulted in consistently low rectal and surface body temperatures during the entire experimental period. In conclusion, acute or chronic administration of the medium containing L-Cit-producing live bacteria, but not of the equimolar amount of L-Cit, reduced the rectal and surface body temperatures of the chicks. Our results suggest that medium containing L-Cit-producing live bacteria can be used as a new feed supplement for lowering the body temperature of chicks.

12.
Neuropeptides ; 71: 90-96, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30220422

ABSTRACT

Heat stress is an issue of rising concern across the globe. Recently, we found that mRNA expression of gonadotropin-inhibitory hormone (GnIH), an orexigenic neuropeptide, was increased in the heat-exposed chick brain when food intake was reduced. The aim of the current study was to examine mRNA expression of GnIH and of the glucocorticoid receptors (GRs) in the hypothalamus as well as the plasma corticosterone (CORT) and metabolites in 14-d-old chicks exposed to a high ambient temperature (HT; 40 ±â€¯1 °C for 1 or 5 h) or a control thermoneutral temperature (CT; 30 ±â€¯1 °C), either with free access to food or fasted. Heat stress caused a voluntary reduction of food intake and reduced plasma triacylglycerol concentration, but increased rectal temperature and plasma CORT and glucose concentrations (P < 0.05). Heat stress also increased (P < 0.05) the expression of diencephalic GnIH mRNA in chicks when they reduced food intake voluntarily, but did not do so under fasting conditions. Although the expression of GR mRNA was not altered as a result of heat stress, its expression was decreased (P < 0.05) in fasted chicks at 5 h in comparison with fed chicks. In addition, the rectal temperature of fasted chicks was lower than that of fed chicks under both CT and HT. In conclusion, voluntary reduction of food intake caused an increase in brain GnIH mRNA expression, plasma CORT, and body temperature in chicks under heat stress. Interestingly, brain GnIH mRNA expression was not induced by heat stress in fasted chicks and was not accompanied by a decrease in rectal temperature. These results suggest that the increased expression of brain GnIH mRNA in chicks under heat stress could be a consequence of a mechanism mediated by the voluntary reduction of food intake, but that it is not a consequence of fasting.


Subject(s)
Avian Proteins/metabolism , Eating/physiology , Fasting/metabolism , Hot Temperature , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Animals , Avian Proteins/genetics , Chickens , Hypothalamic Hormones/genetics , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
J Therm Biol ; 69: 163-170, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037378

ABSTRACT

Recently we demonstrated that L-citrulline (L-Cit) causes hypothermia in chicks. However, the question of how L-Cit mediates hypothermia remained elusive. Thus, the objective of this study was to examine some possible factors in the process of L-Cit-mediated hypothermia and to confirm whether L-Cit can also afford thermotolerance in young chicks. Chicks were subjected to oral administration of L-Cit along with intraperitoneal injection of a nitric oxide synthase (NOS) inhibitor, NG-nitro-l-arginine methyl ester HCl (L-NAME), to examine the involvement of NO in the process of hypothermia. Food intake and plasma metabolites were also analyzed after oral administration of L-Cit in chicks. To examine thermotolerance, chicks were orally administered with a single dose of L-Cit (15mmol/10ml/kg body weight) or the same dose twice within a short interval of 1h (dual oral administration) before the exposure to high ambient temperature (35 ± 1°C) for 180min. Although the rectal temperature was reduced following administration of L-Cit, L-NAME caused a greater reduction. L-NAME reduced total NO2 and NO3 (NOx) in plasma, which confirmed its inhibitory effect on NO. A single oral administration of L-Cit mediated a persistent state of hypothermia for the 300min of the study without affecting food intake. It was further found that plasma glucose was significantly lower in L-Cit-treated chicks. Dual oral administration of L-Cit, but not a single oral administration, afforded thermotolerance without a significant change in plasma NOx in chicks. In conclusion, our results suggest that L-Cit-mediated hypothermia and thermotolerance may not be involved in NO production. L-Cit-mediated thermotolerance further suggests that L-Cit may serve as an important nutritional supplement that could help in coping with summer heat.


Subject(s)
Chickens/physiology , Citrulline/metabolism , Thermotolerance , Administration, Oral , Animals , Blood Glucose/metabolism , Citrulline/administration & dosage , Citrulline/pharmacology , Dietary Supplements/analysis , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Hypothermia/chemically induced , Hypothermia/metabolism , Male , NG-Nitroarginine Methyl Ester/administration & dosage , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Thermotolerance/drug effects
14.
Neuropeptides ; 62: 93-100, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27979380

ABSTRACT

Recently, we demonstrated that brain neuropeptide Y (NPY) mRNA expression was increased in heat exposed chicks. However, the functions of brain NPY during heat stress are unknown. This study was conducted to investigate whether centrally administered NPY affects food intake, rectal temperature, monoamines, stress hormones and plasma metabolites in chicks under high ambient temperatures (HT). Five or six-day-old chicks were centrally injected with 0, 188 or 375pmol of NPY and exposed to either HT (35±1°C) or a control thermoneutral temperature (CT; 30±1°C) for 3h whilst fed or fasted. NPY increased food intake under both CT and HT. NPY reduced rectal temperature 1 and 2h after central administration under CT, but not under HT. Interestingly, NPY decreased brain serotonin and norepinephrine concentrations in fed chicks, but increased concentrations of brain dopamine and its metabolites in fasted and fed chicks, respectively. Plasma epinephrine was decreased by NPY in fed chicks, but plasma concentrations of norepinephrine and epinephrine were increased significantly by NPY in fasted-heat exposed chicks. Furthermore, NPY significantly reduced plasma corticosterone concentrations in fasted chicks. Plasma glucose and triacylglycerol were increased by NPY in fed chicks, but triacylglycerol declined in fasted NPY-injected chicks. In conclusion, brain NPY may attenuate the reduction of food intake during heat stress and the increased brain NPY might be a potential regulator of the monoamines and corticosterone to modulate stress response in heat-exposed chicks.


Subject(s)
Corticosterone/blood , Eating/drug effects , Fasting , Feeding Behavior/drug effects , Neuropeptide Y/pharmacology , Animals , Blood Glucose/metabolism , Chickens , Feeding Behavior/physiology , Hot Temperature , Male , Triglycerides/metabolism
15.
Article in English | MEDLINE | ID: mdl-27840178

ABSTRACT

Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching.


Subject(s)
Body Temperature Regulation , Chickens/physiology , Leucine/metabolism , Animals , Chick Embryo , Feeding Behavior , Growth
16.
J Therm Biol ; 60: 140-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27503726

ABSTRACT

Exposure to a high ambient temperature (HT) can cause heat stress, which has a huge negative impact on physiological functions. Cellular heat-shock response is activated upon exposure to HT for cellular maintenance and adaptation. In addition, antioxidants are used to support physiological functions under HT in a variety of organisms. Flavangenol, an extract of pine bark, is one of the most potent antioxidants with its complex mixture of polyphenols. In the current study, chronic (a single daily oral administration for 14 days) or acute (a single oral administration) oral administration of flavangenol was performed on chicks. Then the chicks were exposed to an acute HT (40±1°C for 3h) to examine the effect of flavangenol on the mRNA expression of heat-shock protein (HSP) in the brain and liver. Rectal temperature, plasma aspartate aminotransferase (AAT), a marker of liver damage, and plasma corticosterone as well as metabolites were also determined. HSP-70 and -90 mRNA expression, rectal temperature, plasma AAT and corticosterone were increased by HT. Interestingly, the chronic, but not the acute, administration of flavangenol caused a declining in the diencephalic mRNA expression of HSP-70 and -90 and plasma AAT in HT-exposed chicks. Moreover, the hepatic mRNA expression of HSP-90 was also significantly decreased by chronic oral administration of flavangenol in HT chicks. These results indicate that chronic, but not acute, oral administration of flavangenol attenuates HSP mRNA expression in the central and peripheral tissues due to its possible role in improving cellular protective functions during heat stress. The flavangenol-dependent decline in plasma AAT further suggests that liver damage induced by heat stress was minimized by flavangenol.


Subject(s)
Antioxidants/therapeutic use , Biflavonoids/therapeutic use , Chickens/physiology , Heat-Shock Proteins/genetics , Heat-Shock Response/drug effects , Proanthocyanidins/therapeutic use , Administration, Oral , Animals , Antioxidants/administration & dosage , Aspartate Aminotransferases/blood , Biflavonoids/administration & dosage , Chickens/blood , Gene Expression Regulation/drug effects , Heat Stress Disorders/blood , Heat Stress Disorders/metabolism , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Male , Pinus/chemistry , Plant Bark/chemistry , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Poultry Diseases/blood , Poultry Diseases/metabolism , Poultry Diseases/prevention & control , Proanthocyanidins/administration & dosage , RNA, Messenger/genetics
17.
Physiol Behav ; 155: 141-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26687893

ABSTRACT

Recently, we observed that neonatal chicks exhibit feeding behavior characterized by frequent food intake and short resting intervals, with changes detected in the brain amino acid and monoamine concentrations. In this study, we aimed to clarify further the relationship between the appetite of neonatal chicks and brain amino acid metabolism. In Experiment 1, changes were investigated in free amino acids in the brain under conditions of regulated appetite induced by fasting and subsequent short-term re-feeding. Chicks (5 days old) were distributed into four treatment groups--namely, fasting for 3h, and fasting for 3h followed by re-feeding for 10, 20 or 30 min. Brain samples were collected after treatment to analyze free amino acid concentrations. Amino adipic acid and proline in all brain parts as well as arginine and ornithine in all brain parts--except mesencephalic arginine and cerebellar ornithine--were increased in a time-dependent manner following re-feeding. In Experiment 2, we further examined the effect of exogenous administration of some amino acids altered in association with feeding behavior in Experiment 1. We chose L-arginine and its functional metabolite, L-ornithine, to analyze their effects on food intake in chicks. Intracerebroventricular injection (2 µmol) of L-ornithine, but not L-arginine, significantly inhibited food intake in neonatal chicks. In Experiment 3, we found that central injection of L-ornithine (2, 4, and 6 µmol) dose-dependently suppressed food intake in chicks. These results suggested that L-ornithine may have an important role in the control of food intake as an acute satiety signal in the neonatal chick brain.


Subject(s)
Brain/metabolism , Ornithine/metabolism , Satiation/physiology , Animals , Animals, Newborn , Arginine/administration & dosage , Arginine/metabolism , Brain/drug effects , Central Nervous System Agents/administration & dosage , Chickens , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology , Male , Ornithine/administration & dosage , Random Allocation , Satiation/drug effects
18.
Springerplus ; 4: 252, 2015.
Article in English | MEDLINE | ID: mdl-26191470

ABSTRACT

Domesticated chicks are precocial and therefore have relatively well-developed feeding behavior. The role of hypothalamic neuropeptides in food-intake regulation in chicks has been reported for decades. However, we hypothesized that nutrients and their metabolites in the brain may be involved in food intake in chicks because these animals exhibit a very frequent feeding pattern. Therefore, the purpose of this study was to examine the feeding behavior of chicks as well as the associated changes in free amino acid and monoamine concentrations in the chick brain. The feeding behavior of chicks was recorded continuously for 6 h. The next day, brain and blood samples were collected when the chicks either attempted to have food (hungry group) or turned food down (satiated group), in order to analyze the concentrations of the free amino acids and monoamines. We confirmed that the feeding behavior of neonatal chicks was characterized by short resting periods between very brief times spent on food intake. Several free amino acids in the mesencephalon were significantly lower in the satiated group than in the hungry group, while l-histidine and l-glutamine were significantly higher. Notably, there was no change in the free amino acid concentrations in other brain regions or plasma. As for monoamines, serotonin and norepinephrine were significantly lower in the mesencephalon of the hungry group compared with the satiated group, but 5 hydroxyindolacetic acid (5-HIAA) was higher. In addition, serotonin and norepinephrine levels were significantly higher in the brain stem of the hungry chicks compared with the satiated group, but levels of 5-HIAA and homovanillic acid were lower. Levels of both dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid, were significantly higher in the diencephalon and telencephalon of the chicks in the hungry group. In conclusion, the changes in the free amino acids and monoamines in the brain may have some role in the feeding behavior of neonatal chicks.

SELECTION OF CITATIONS
SEARCH DETAIL
...