Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 63(6): 802-816, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35380735

ABSTRACT

K+/Na+ homeostasis is important for land plants, particularly under salt stress. In this study, the structure and ion transport properties of the high-affinity K+ transporter (HKT) of the liverwort Marchantia polymorpha were investigated. Only one HKT gene, MpHKT1, was identified in the genome of M. polymorpha. Phylogenetic analysis of HKT proteins revealed that non-seed plants possess HKTs grouped into a clade independent of the other two clades including HKTs of angiosperms. A distinct long hydrophilic domain was found in the C-terminus of MpHKT1. Complementary DNA (cDNA) of truncated MpHKT1 (t-MpHKT1) encoding the MpHKT_Δ596-812 protein was used to examine the functions of the C-terminal domain. Both MpHKT1 transporters fused with enhanced green fluorescent protein at the N-terminus were localized to the plasma membrane when expressed in rice protoplasts. Two-electrode voltage clamp experiments using Xenopus laevis oocytes indicated that MpHKT1 mediated the transport of monovalent alkali cations with higher selectivity for Na+ and K+, but truncation of the C-terminal domain significantly reduced the transport activity with a decrease in the Na+ permeability. Overexpression of MpHKT1 or t-MpHKT1 in M. polymorpha conferred accumulation of higher Na+ levels and showed higher Na+ uptake rates, compared to those of wild-type plants; however, phenotypes with t-MpHKT1 were consistently weaker than those with MpHKT1. Together, these findings suggest that the hydrophilic C-terminal domain plays a unique role in the regulation of transport activity and ion selectivity of MpHKT1.


Subject(s)
Cation Transport Proteins , Marchantia , Oryza , Cation Transport Proteins/metabolism , DNA, Complementary/genetics , Marchantia/genetics , Marchantia/metabolism , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium/metabolism
2.
Plants (Basel) ; 10(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34685816

ABSTRACT

In rice, the high-affinity K+ transporter, OsHKT1;3, functions as a Na+-selective transporter. mRNA variants of OsHKT1;3 have been reported previously, but their functions remain unknown. In this study, five OsHKT1;3 variants (V1-V5) were identified from japonica rice (Nipponbare) in addition to OsHKT1;3_FL. Absolute quantification qPCR analyses revealed that the transcript level of OsHKT1;3_FL was significantly higher than other variants in both the roots and shoots. Expression levels of OsHKT1;3_FL, and some variants, increased after 24 h of salt stress. Two electrode voltage clamp experiments in a heterologous expression system using Xenopus laevis oocytes revealed that oocytes expressing OsHKT1;3_FL and all of its variants exhibited smaller Na+ currents. The presented data, together with previous data, provide insights to understanding how OsHKT family members are involved in the mechanisms of ion homeostasis and salt tolerance in rice.

3.
Int J Mol Sci ; 21(19)2020 09 27.
Article in English | MEDLINE | ID: mdl-32992595

ABSTRACT

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Subject(s)
Aquaporins/metabolism , Calcium/metabolism , Hordeum/metabolism , Ion Transport , Oocytes/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Potassium/metabolism , Sodium/metabolism , Animals , Aquaporins/genetics , Cations/metabolism , Cell Membrane/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Plant , Hordeum/genetics , Patch-Clamp Techniques , Phosphorylation , Plant Proteins/genetics , Plant Shoots/genetics , RNA, Complementary/administration & dosage , Water/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...