Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(47): 11335-11343, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37990852

ABSTRACT

The inefficient delivery of antimicrobials to their target is a significant factor contributing to antibiotic resistance. As such, smart nanomaterials that respond to external stimuli are extensively explored for precise drug delivery. Here, we investigate how drug loading methods and the structure of antibiotics impact the effectiveness of photothermally active polydopamine nanoparticles (PDNPs) as a laser-responsive drug delivery system. We examine two loading methods: in-synthesis and post-synthesis, and evaluate how laser irradiation affects drug release. Density functional theory calculations are also performed to gain deeper insights into the drug-PDNP interactions. Our findings point to the critical role of antibiotic structure and drug loading method in the laser-responsive capabilities of PDNPs as drug nanocarriers. Our study offers valuable insights for optimizing the design and efficiency of PDNP-based drug delivery systems.


Subject(s)
Drug Carriers , Nanoparticles , Drug Carriers/chemistry , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry
2.
J Am Chem Soc ; 145(36): 19894-19902, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37656631

ABSTRACT

Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.

3.
Nat Chem ; 15(9): 1285-1295, 2023 09.
Article in English | MEDLINE | ID: mdl-37308709

ABSTRACT

The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.


Subject(s)
Sulfhydryl Compounds , Isomerism , Databases, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...