Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1713: 464567, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38103474

ABSTRACT

In this study, a molecularly imprinted polymer (MIP)-based extraction process for determining curcumin in food samples was carried out. MIP and NIP were thermally synthesized in acetonitrile solvent (porogen) using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linking agent, azobisisobutyronitrile as an initiator, and curcumin as a template molecule. Parameters affecting the synthesis process, such as temperature, the ratio of the components in the reaction, and the extraction solvent, were investigated. The characteristics of the synthesized material were examined using infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacity of the material was found to be 1.34 mg/g MIP with an adsorption efficiency of 89.96% for MIP and 12.35% for NIP. The MIP material exhibited high selectivity for curcumin compared to other compounds such as quercetin (18.00%), rutin (14.74%), and ketoconazole (0.00%). The analysis method for curcumin using the MIP material was performed with validated parameters including linear range (1 - 25 mg/L, r2 = 0.9997), accuracy (recovery rate of 90.90 %), precision (RSDR = 0.338 %, RSDr = 1.591 %), detection limit (0.051 mg/L), and quantification limit (0.156 mg/L). The validation results indicated that the HPLC-DAD method was entirely suitable for analyzing the curcumin content in food samples.


Subject(s)
Curcumin , Molecular Imprinting , Polymers/chemistry , Molecular Imprinting/methods , Solvents , Molecularly Imprinted Polymers , Solid Phase Extraction/methods , Adsorption , Chromatography, High Pressure Liquid/methods
2.
Viruses ; 15(4)2023 04 19.
Article in English | MEDLINE | ID: mdl-37112982

ABSTRACT

The unprecedented pandemic of COVID-19, caused by a novel coronavirus, SARS-CoV-2, and its highly transmissible variants, led to massive human suffering, death, and economic devastation worldwide. Recently, antibody-evasive SARS-CoV-2 subvariants, BQ and XBB, have been reported. Therefore, the continued development of novel drugs with pan-coronavirus inhibition is critical to treat and prevent infection of COVID-19 and any new pandemics that may emerge. We report the discovery of several highly potent small-molecule inhibitors. One of which, NBCoV63, showed low nM potency against SARS-CoV-2 (IC50: 55 nM), SARS-CoV-1 (IC50: 59 nM), and MERS-CoV (IC50: 75 nM) in pseudovirus-based assays with excellent selectivity indices (SI > 900), suggesting its pan-coronavirus inhibition. NBCoV63 showed equally effective antiviral potency against SARS-CoV-2 mutant (D614G) and several variants of concerns (VOCs) such as B.1.617.2 (Delta), B.1.1.529/BA.1 and BA.4/BA.5 (Omicron), and K417T/E484K/N501Y (Gamma). NBCoV63 also showed similar efficacy profiles to Remdesivir against authentic SARS-CoV-2 (Hong Kong strain) and two of its variants (Delta and Omicron), SARS-CoV-1, and MERS-CoV by plaque reduction in Calu-3 cells. Additionally, we show that NBCoV63 inhibits virus-mediated cell-to-cell fusion in a dose-dependent manner. Furthermore, the absorption, distribution, metabolism, and excretion (ADME) data of NBCoV63 demonstrated drug-like properties.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Anti-Retroviral Agents , Spike Glycoprotein, Coronavirus/genetics
3.
J Immunol ; 193(7): 3278-87, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25156366

ABSTRACT

Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making JAK inhibition an appealing strategy for the treatment of psoriasis. In this study, we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and tyrosine kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose dependently (1 nM-10 µM) inhibited JAK1- and/or TYK2-dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild-type mice with SAR-20347 significantly reduced IL-12-induced IFN-γ production and IL-22-dependent serum amyloid A to similar extents, indicating that, in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes and proinflammatory cytokine levels compared with both TYK2 mutant mice and wild-type controls. Taken together, these data indicate that targeting both JAK1- and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis.


Subject(s)
Dermatitis/drug therapy , Interleukin-17/immunology , Interleukin-23/immunology , Interleukins/immunology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Psoriasis/drug therapy , Signal Transduction/drug effects , TYK2 Kinase/antagonists & inhibitors , Animals , Dermatitis/genetics , Dermatitis/immunology , Dermatitis/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-17/genetics , Interleukin-23/genetics , Interleukins/genetics , Janus Kinase 1/genetics , Janus Kinase 1/immunology , Mice , Mice, Mutant Strains , Psoriasis/genetics , Psoriasis/immunology , Psoriasis/pathology , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/immunology , Signal Transduction/genetics , Signal Transduction/immunology , TYK2 Kinase/genetics , TYK2 Kinase/immunology , Interleukin-22
4.
Curr HIV Res ; 7(6): 639-49, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19929801

ABSTRACT

Despite availability of successful prevention strategies, HIV continues to spread at alarming rates, especially among women in developing countries. Vaginal microbicides offer a promising approach for blocking transmission of HIV when condom use cannot be negotiated with male partners. A major problem in the development of vaginal microbicides is chemically induced vaginal irritation, which can enhance the risk of HIV transmission. Evaluation of vaginal irritation prior to clinical trials typically uses an expensive and animal-intensive rabbit vaginal irritation model, which could be supplemented by measuring additional inflammatory biomarkers. We studied several immunological parameters as potential biomarkers of vaginal irritation, using the spermicides nonoxynol-9 and benzalkonium chloride as test microbicides. We measured amounts of cytokines, as well as inflammatory cells, in vaginal tissue lysates and on the vaginal surface. We observed that treatment with the selected microbicides increases quantities of the inflammatory cytokines interleukin-1beta, CXCL8, and CCL2 in the vaginal tissue parenchyma, and of CCL2 on the vaginal surface. This observation was correlated with increases in macrophages in the vaginal parenchyma. We suggest that measurements of CCL2 and macrophages can serve as new inflammatory biomarkers to evaluate the safety of promising novel microbicides for prevention of HIV.


Subject(s)
Benzalkonium Compounds/adverse effects , Cell Movement/drug effects , Chemokine CCL2/biosynthesis , Inflammation/immunology , Macrophages/drug effects , Monocytes/drug effects , Nonoxynol/adverse effects , Surface-Active Agents/adverse effects , Vagina/drug effects , Animals , Biomarkers , Chemokine CCL2/immunology , Female , HIV/drug effects , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Humans , Inflammation/metabolism , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Interleukin-8/biosynthesis , Interleukin-8/immunology , Macrophages/physiology , Monocytes/physiology , Rabbits , Vagina/pathology , Vagina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...