Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Water Resour Res ; 58(3): e2021WR031191, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35866043

ABSTRACT

Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within-year and over-year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run-of-river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi-basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling-Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins.

2.
Arch Biochem Biophys ; 403(2): 160-70, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12139965

ABSTRACT

The broadly reactive cysteine protease dipeptidyl peptidase I (DPPI, cathepsin C) is thought to activate all progranzymes (zymogens of lymphocyte serine proteases) to form mature granzymes. We synthesized dipeptide 7-amino-4-methylcoumarin (AMC) substrates containing progranzyme activation sequences and showed that they were efficiently hydrolyzed by DPPI. However, DPPI will not hydrolyze Ile-Ile-AMC, the N-terminal dipeptide sequence found in mature granzymes. Introduction of the nonphysiological homophenylalanine (Hph) residue at P1 resulted in the best substrate Ala-Hph-AMC for DPPI (k(cat)/K(m)=9,000,000M(-1)s(-1)). The charged N-terminal amino group of the substrate was essential and replacement of the NH(2) group with OH or NH(CH(3)) in Gly-Phe-AMC reduced the k(cat)/K(m) value by two to three orders of magnitude. A hydrazide azaglycine analog, NH(2)NHCO-Phe-AMC, was not hydrolyzed at pH 5.5, but underwent slow hydrolysis at lower pHs where the amino group is partially protonated. DPPI also failed to hydrolyze NH(2)COCH(2)-Phe-AMC, where the NH(2) group is unprotonated. The results reported in this paper should be useful in the design of better DPPI inhibitors to block granzyme maturation and granzyme-dependent apoptosis.


Subject(s)
Cathepsin C/metabolism , Catalytic Domain , Cathepsin C/chemistry , Coumarins/chemistry , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...