Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 19340-19349, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38570338

ABSTRACT

Solid-state quantum emitters are vital building blocks for quantum information science and quantum technology. Among various types of solid-state emitters discovered to date, color centers in hexagonal boron nitride have garnered tremendous traction in recent years, thanks to their environmental robustness, high brightness, and room-temperature operation. Most recently, these quantum emitters have been employed for satellite-based quantum key distribution. One of the most important requirements to qualify these emitters for space-based applications is their optical stability against cryogenic thermal shock. Such an understanding has, however, remained elusive to date. Here, we report on the effects caused by such thermal shock that induces random, irreversible changes in the spectral characteristics of the quantum emitters. By employing a combination of structural characterizations and density functional calculations, we attribute the observed changes to lattice strain caused by cryogenic temperature shock. Our study sheds light on the stability of the quantum emitters under extreme conditions─similar to those countered in outer space.

2.
Adv Mater ; 36(2): e2308844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972577

ABSTRACT

Optical multiplexing for nanoscale object recognition is of great significance within the intricate domains of biology, medicine, anti-counterfeiting, and microscopic imaging. Traditionally, the multiplexing dimensions of nanoscopy are limited to emission intensity, color, lifetime, and polarization. Here, a novel dimension, optical nonlinearity, is proposed for super-resolved multiplexing microscopy. This optical nonlinearity is attributable to the energy transitions between multiple energy levels of the doped lanthanide ions in upconversion nanoparticles (UCNPs), resulting in unique optical fingerprints for UCNPs with different compositions. A vortex beam is applied to transport the optical nonlinearity onto the imaging point-spread function (PSF), creating a robust super-resolved multiplexing imaging strategy for differentiating UCNPs with distinctive optical nonlinearities. The composition information of the nanoparticles can be retrieved with variations of the corresponding PSF in the obtained image. Four channels multiplexing super-resolved imaging with a single scanning, applying emission color and nonlinearity of two orthogonal imaging dimensions with a spatial resolution higher than 150 nm (1/6.5λ), are demonstrated. This work provides a new and orthogonal dimension - optical nonlinearity - to existing multiplexing dimensions, which shows great potential in bioimaging, anti-counterfeiting, microarray assays, deep tissue multiplexing detection, and high-density data storage.

3.
ACS Nano ; 17(3): 2725-2736, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36661346

ABSTRACT

All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 × 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.

4.
Sci Rep ; 12(1): 96, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996941

ABSTRACT

Solid-state quantum emitters coupled with a single mode fibre are of interest for photonic and quantum applications. In this context, nanofibre Bragg cavities (NFBCs), which are microcavities fabricated in an optical nanofibre, are promising devices because they can efficiently couple photons emitted from the quantum emitters to the single mode fibre. Recently, we have realized a hybrid device of an NFBC and a single colloidal CdSe/ZnS quantum dot. However, colloidal quantum dots exhibit inherent photo-bleaching. Thus, it is desired to couple an NFBC with hexagonal boron nitride (hBN) as stable quantum emitters. In this work, we realize a hybrid system of an NFBC and ensemble defect centres in hBN nanoflakes. In this experiment, we fabricate NFBCs with a quality factor of 807 and a resonant wavelength at around 573 nm, which matches well with the fluorescent wavelength of the hBN, using helium-focused ion beam (FIB) system. We also develop a manipulation system to place hBN nanoflakes on a cavity region of the NFBCs and realize a hybrid device with an NFBC. By exciting the nanoflakes via an objective lens and collecting the fluorescence through the NFBC, we observe a sharp emission peak at the resonant wavelength of the NFBC.

5.
ACS Appl Mater Interfaces ; 13(39): 47283-47292, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34549932

ABSTRACT

Single-photon emitters in hexagonal boron nitride (hBN) are promising constituents for integrated quantum photonics. Specifically, engineering these emitters in large-area, high-quality, exfoliated hBN is needed for their incorporation into photonic devices and two dimensional heterostructures. Here, we report on two different routes to generate high-density quantum emitters with excellent optical properties-including high brightness and photostability. We study in detail high-temperature annealing and plasma treatments as an efficient means to generate dense emitters. We show that both an optimal oxygen flow rate and annealing temperature are required for the formation of high-density quantum emitters. In parallel, we demonstrate that the plasma treatment in various environments, followed by standard annealing is also an effective route for emission engineering. Our work provides vital information for the fabrication of quantum emitters in high-quality, exfoliated hBN flakes and paves the way toward the integration of the quantum emitters with photonic devices.

6.
Small ; 17(17): e2008062, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33733581

ABSTRACT

Fluorescent nanoparticles are widely utilized in a large range of nanoscale imaging and sensing applications. While ultra-small nanoparticles (size ≤10 nm) are highly desirable, at this size range, their photostability can be compromised due to effects such as intensity fluctuation and spectral diffusion caused by interaction with surface states. In this article, a facile, bottom-up technique for the fabrication of sub-10-nm hexagonal boron nitride (hBN) nanoparticles hosting photostable bright emitters via a catalyst-free hydrothermal reaction between boric acid and melamine is demonstrated. A simple stabilization protocol that significantly reduces intensity fluctuation by ≈85% and narrows the emission linewidth by ≈14% by employing a common sol-gel silica coating process is also implemented. This study advances a promising strategy for the scalable, bottom-up synthesis of high-quality quantum emitters in hBN nanoparticles.

7.
Inorg Chem ; 59(17): 12166-12175, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32822161

ABSTRACT

A uranium oxide hydrate framework, [U(H2O)2]{[(UO2)10O10(OH)2][(UO4)(H2O)2]} (UOF1), was synthesized hydrothermally using schoepite as a uranium precursor. The crystal strucutre of UOF1 was revealed with synchrotron single-crystal X-ray diffraction and confirmed with transmission electron miscroscopy. The typical uranyl oxide hydroxide layers similar to those in ß-U3O8 are further connected via double-pentagonal-bipyramidal uranium polyhedra to form a three-dimensional (3D) framework structure with tetravalent uranium species inside the channels. The presence of mixed-valence uranium was investigated with a combination of X-ray absorption near-edge structure and diffuse reflectance spectroscopy. Apart from the major hexavalent uranium, evidence for tetravalent uranium was also found, consistent with the bond valence sum calculations. The successful preparation of UOF1 as the first pure uranium oxide hydrate framework sheds light on the structural understanding of the alteration of UO2+x as either a mineral or spent nuclear fuel.

8.
Nano Lett ; 20(7): 5309-5314, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32530635

ABSTRACT

Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing.

9.
ACS Appl Mater Interfaces ; 12(22): 25464-25470, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32394697

ABSTRACT

Nanoscale optical thermometry is a promising noncontact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nanoscale hexagonal boron nitride. We show that these nanothermometers show better performance than homologous, all-optical nanothermometers in both sensitivity and the range of working temperature. We demonstrate their effectiveness as nanothermometers by monitoring the local temperature at specific locations in a variety of custom-built microcircuits. This work opens new avenues for nanoscale temperature measurements and heat flow studies in miniaturized, integrated devices.

10.
Adv Mater ; 32(21): e1908316, 2020 May.
Article in English | MEDLINE | ID: mdl-32270896

ABSTRACT

Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, tensile strain is applied to quantum emitters embedded in few-layer hBN films and both red and blue spectral shifts are realized with tuning magnitudes up to 65 meV, a record for any 2D quantum source. Reversible tuning of the emission and related photophysical properties is demonstrated. Rotation of the optical dipole in response to strain is also observed, suggesting the presence of a second excited state. A theoretical model is derived to describe strain-based tuning in hBN, and the rotation of the optical dipole. The study demonstrates the immense potential for strain tuning of quantum emitters in layered materials to enable their employment in scalable quantum photonic networks.

11.
Adv Mater ; 32(9): e1906458, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31989695

ABSTRACT

Diamond is known to possess a range of extraordinary properties that include exceptional mechanical stability. In this work, it is demonstrated that nanoscale diamond pillars can undergo not only elastic deformation (and brittle fracture), but also a new form of plastic deformation that depends critically on the nanopillar dimensions and crystallographic orientation of the diamond. The plastic deformation can be explained by the emergence of an ordered allotrope of carbon that is termed O8-carbon. The new phase is predicted by simulations of the deformation dynamics, which show how the sp3 bonds of (001)-oriented diamond restructure into O8-carbon in localized regions of deforming diamond nanopillars. The results demonstrate unprecedented mechanical behavior of diamond, and provide important insights into deformation dynamics of nanostructured materials.

12.
Opt Lett ; 44(19): 4873-4876, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568464

ABSTRACT

Single-photon sources in solid-state systems are widely explored as fundamental constituents of numerous quantum-based technologies. We report the observation of single-photon emitters in zinc sulfide and present their photophysical properties via established spectroscopy techniques. The emitter behaves like a three-level system with an intermediate metastable state. It emits at ∼640 nm, and its emission is linearly polarized, with a lifetime of (2.2±0.8) ns. The existence of single-photon sources in zinc sulfide is appealing due to the well-established manufacturing techniques of the material, its versatile technological uses, as well as the availability of many zinc isotopes with potential for designing ad hoc emitter-host pairs with tailored properties.

13.
Nano Lett ; 19(8): 5417-5422, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31264881

ABSTRACT

Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation technique with sizes below 10 nm. The particles exhibit bright fluorescence generated by color centers that act as atomic-size quantum emitters. We analyze their optical properties, including emission wavelength, photon-statistics, and photodynamics, and show that they are suitable for far-field super-resolution fluorescence nanoscopy. Our results provide a foundation for exploration of hBN nanoparticles as candidates for bioimaging, labeling, as well as biomarkers that are suitable for quantum sensing.


Subject(s)
Boron Compounds/chemistry , Nanoparticles/chemistry , Cold Temperature , Fluorescence , Fluorescent Dyes/chemistry , Nanoparticles/ultrastructure , Nanotechnology/methods , Particle Size , Surface Properties
14.
Sci Adv ; 5(5): eaav9180, 2019 May.
Article in English | MEDLINE | ID: mdl-31058227

ABSTRACT

Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light-emitting diodes, and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite anti-Stokes process, where excitation is performed with lower-energy photons. We report that the process is sufficiently efficient to excite even a single quantum system-namely, the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method used to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems and harness it toward the realization of practical nanoscale thermometry and sensing.

15.
ACS Nano ; 13(3): 3132-3140, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30715854

ABSTRACT

Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a widespread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: ∼100-200 per 10 × 10 µm2. More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid-state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on two-dimensional materials.

16.
Nano Lett ; 18(8): 5205-5210, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30005161

ABSTRACT

Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. We report subdiffractive internal structure diagnosis of hexagonal boron nitride by exciting and imaging hyperbolic phonon polaritons. On the basis of their unique propagation properties, we are able to accurately locate defects in the crystal interior with nanometer resolution. The precise location, size, and geometry of the concealed defects are reconstructed by analyzing the polariton wavelength, reflection coefficient, and their dispersion. We have also studied the evolution of polariton reflection, transmission, and scattering as a function of defect size and photon frequency. The nondestructive high-precision polaritonic structure diagnosis technique introduced here can be also applied to other hyperbolic or waveguide systems and may be deployed in the next-generation biomedical imaging, sensing, and fine structure analysis.


Subject(s)
Boron Compounds/chemistry , Nanostructures/chemistry , Phonons , Computer Simulation , Molecular Structure , Particle Size
17.
Nanoscale ; 10(17): 7957-7965, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29682653

ABSTRACT

Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.

18.
Nat Commun ; 9(1): 874, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491451

ABSTRACT

Layered van der Waals materials are emerging as compelling two-dimensional platforms for nanophotonics, polaritonics, valleytronics and spintronics, and have the potential to transform applications in sensing, imaging and quantum information processing. Among these, hexagonal boron nitride (hBN) is known to host ultra-bright, room-temperature quantum emitters, whose nature is yet to be fully understood. Here we present a set of measurements that give unique insight into the photophysical properties and level structure of hBN quantum emitters. Specifically, we report the existence of a class of hBN quantum emitters with a fast-decaying intermediate and a long-lived metastable state accessible from the first excited electronic state. Furthermore, by means of a two-laser repumping scheme, we show an enhanced photoluminescence and emission intensity, which can be utilized to realize a new modality of far-field super-resolution imaging. Our findings expand current understanding of quantum emitters in hBN and show new potential ways of harnessing their nonlinear optical properties in sub-diffraction nanoscopy.

19.
Nanoscale ; 10(5): 2267-2274, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29319710

ABSTRACT

The assembly of quantum nanophotonic systems with plasmonic resonators is important for fundamental studies of single photon sources as well as for on-chip information processing. In this work, we demonstrate the controllable nanoassembly of gold nanospheres with ultra-bright narrow-band quantum emitters in 2D layered hexagonal boron nitride (hBN). We utilize an atomic force microscope (AFM) tip to precisely position gold nanospheres to close proximity to the quantum emitters and observe the resulting emission enhancement and fluorescence lifetime reduction. The extreme emitter photostability permits analysis at high excitation powers, and delineation of absorption and emission enhancement caused by the plasmonic resonators. A fluorescence enhancement of over 300% is achieved experimentally for quantum emitters in hBN, with a radiative quantum efficiency of up to 40% and a saturated count rate in excess of 5 × 106 counts per s. Our results are promising for the future employment of quantum emitters in hBN for integrated nanophotonic devices and plasmonic based nanosensors.

20.
Nanoscale ; 9(36): 13575-13582, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28876012

ABSTRACT

Hexagonal boron nitride (hBN) has recently emerged as a fascinating platform for room-temperature quantum photonics due to the discovery of robust visible light single-photon emitters. In order to utilize these emitters, it is necessary to have a clear understanding of their atomic structure and the associated excitation processes that give rise to this single photon emission. Here, we performed density-functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates. By applying a number of criteria on the electronic structure of the ground state and the atomic structure of the excited states of the considered defects, and then calculating the Huang-Rhys (HR) factor, we found that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor of 1.66, in good agreement with the experimental HR factor. We calculated the photoluminescence (PL) line shape for this defect and found that it reproduces a number of key features in the experimental PL lineshape.

SELECTION OF CITATIONS
SEARCH DETAIL
...