Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
IEEE J Biomed Health Inform ; 27(10): 5042-5053, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37498761

ABSTRACT

Fidgety movements occur in infants between the age of 9 to 20 weeks post-term, and their absence are a strong indicator that an infant has cerebral palsy. Prechtl's General Movement Assessment method evaluates whether an infant has fidgety movements, but requires a trained expert to conduct it. Timely evaluation facilitates early interventions, and thus computer-based methods have been developed to aid domain experts. However, current solutions rely on complex models or high-dimensional representations of the data, which hinder their interpretability and generalization ability. To address that we propose [Formula: see text], a method that detects fidgety movements and uses them towards an assessment of the quality of an infant's general movements. [Formula: see text] is true to the domain expert process, more accurate, and highly interpretable due to its fine-grained scoring system. The main idea behind [Formula: see text] is to specify signal properties of fidgety movements that are measurable and quantifiable. In particular, we measure the movement direction variability of joints of interest, for movements of small amplitude in short video segments. [Formula: see text] also comprises a strategy to reduce those measurements to a single score that quantifies the quality of an infant's general movements; the strategy is a direct translation of the qualitative procedure domain experts use to assess infants. This brings [Formula: see text] closer to the process a domain expert applies to decide whether an infant produced enough fidgety movements. We evaluated [Formula: see text] on the largest clinical dataset reported, where it showed to be interpretable and more accurate than many methods published to date.

2.
BMJ Open ; 13(4): e066249, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37116996

ABSTRACT

INTRODUCTION: Meta-analytical evidence confirms a range of interventions, including mindfulness, physical activity and sleep hygiene, can reduce psychological distress in university students. However, it is unclear which intervention is most effective. Artificial intelligence (AI)-driven adaptive trials may be an efficient method to determine what works best and for whom. The primary purpose of the study is to rank the effectiveness of mindfulness, physical activity, sleep hygiene and an active control on reducing distress, using a multiarm contextual bandit-based AI-adaptive trial method. Furthermore, the study will explore which interventions have the largest effect for students with different levels of baseline distress severity. METHODS AND ANALYSIS: The Vibe Up study is a pragmatically oriented, decentralised AI-adaptive group sequential randomised controlled trial comparing the effectiveness of one of three brief, 2-week digital self-guided interventions (mindfulness, physical activity or sleep hygiene) or active control (ecological momentary assessment) in reducing self-reported psychological distress in Australian university students. The adaptive trial methodology involves up to 12 sequential mini-trials that allow for the optimisation of allocation ratios. The primary outcome is change in psychological distress (Depression, Anxiety and Stress Scale, 21-item version, DASS-21 total score) from preintervention to postintervention. Secondary outcomes include change in physical activity, sleep quality and mindfulness from preintervention to postintervention. Planned contrasts will compare the four groups (ie, the three intervention and control) using self-reported psychological distress at prespecified time points for interim analyses. The study aims to determine the best performing intervention, as well as ranking of other interventions. ETHICS AND DISSEMINATION: Ethical approval was sought and obtained from the UNSW Sydney Human Research Ethics Committee (HREC A, HC200466). A trial protocol adhering to the requirements of the Guideline for Good Clinical Practice was prepared for and approved by the Sponsor, UNSW Sydney (Protocol number: HC200466_CTP). TRIAL REGISTRATION NUMBER: ACTRN12621001223820.


Subject(s)
Mindfulness , Psychological Distress , Humans , Universities , Artificial Intelligence , Australia , Mindfulness/methods , Students/psychology , Stress, Psychological/prevention & control , Stress, Psychological/psychology , Randomized Controlled Trials as Topic
3.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1020-1029, 2023.
Article in English | MEDLINE | ID: mdl-35820003

ABSTRACT

Many high-performance DTA deep learning models have been proposed, but they are mostly black-box and thus lack human interpretability. Explainable AI (XAI) can make DTA models more trustworthy, and allows to distill biological knowledge from the models. Counterfactual explanation is one popular approach to explaining the behaviour of a deep neural network, which works by systematically answering the question "How would the model output change if the inputs were changed in this way?". We propose a multi-agent reinforcement learning framework, Multi-Agent Counterfactual Drug-target binding Affinity (MACDA), to generate counterfactual explanations for the drug-protein complex. Our proposed framework provides human-interpretable counterfactual instances while optimizing both the input drug and target for counterfactual generation at the same time. We benchmark the proposed MACDA framework using the Davis and PDBBind dataset and find that our framework produces more parsimonious explanations with no loss in explanation validity, as measured by encoding similarity. We then present a case study involving ABL1 and Nilotinib to demonstrate how MACDA can explain the behaviour of a DTA model in the underlying substructure interaction between inputs in its prediction, revealing mechanisms that align with prior domain knowledge.


Subject(s)
Benchmarking , Neural Networks, Computer , Humans , Drug Development
4.
Int J Data Sci Anal ; : 1-16, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36440369

ABSTRACT

Discovering new medicines is the hallmark of the human endeavor to live a better and longer life. Yet the pace of discovery has slowed down as we need to venture into more wildly unexplored biomedical space to find one that matches today's high standard. Modern AI-enabled by powerful computing, large biomedical databases, and breakthroughs in deep learning offers a new hope to break this loop as AI is rapidly maturing, ready to make a huge impact in the area. In this paper, we review recent advances in AI methodologies that aim to crack this challenge. We organize the vast and rapidly growing literature on AI for drug discovery into three relatively stable sub-areas: (a) representation learning over molecular sequences and geometric graphs; (b) data-driven reasoning where we predict molecular properties and their binding, optimize existing compounds, generate de novo molecules, and plan the synthesis of target molecules; and (c) knowledge-based reasoning where we discuss the construction and reasoning over biomedical knowledge graphs. We will also identify open challenges and chart possible research directions for the years to come.

5.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35788823

ABSTRACT

Predicting the drug-target interaction is crucial for drug discovery as well as drug repurposing. Machine learning is commonly used in drug-target affinity (DTA) problem. However, the machine learning model faces the cold-start problem where the model performance drops when predicting the interaction of a novel drug or target. Previous works try to solve the cold start problem by learning the drug or target representation using unsupervised learning. While the drug or target representation can be learned in an unsupervised manner, it still lacks the interaction information, which is critical in drug-target interaction. To incorporate the interaction information into the drug and protein interaction, we proposed using transfer learning from chemical-chemical interaction (CCI) and protein-protein interaction (PPI) task to drug-target interaction task. The representation learned by CCI and PPI tasks can be transferred smoothly to the DTA task due to the similar nature of the tasks. The result on the DTA datasets shows that our proposed method has advantages compared to other pre-training methods in the DTA task.


Subject(s)
Drug Development , Machine Learning , Drug Discovery/methods , Drug Repositioning
6.
Article in English | MEDLINE | ID: mdl-34197324

ABSTRACT

Predicting the interaction between a compound and a target is crucial for rapid drug repurposing. Deep learning has been successfully applied in drug-target affinity (DTA)problem. However, previous deep learning-based methods ignore modeling the direct interactions between drug and protein residues. This would lead to inaccurate learning of target representation which may change due to the drug binding effects. In addition, previous DTA methods learn protein representation solely based on a small number of protein sequences in DTA datasets while neglecting the use of proteins outside of the DTA datasets. We propose GEFA (Graph Early Fusion Affinity), a novel graph-in-graph neural network with attention mechanism to address the changes in target representation because of the binding effects. Specifically, a drug is modeled as a graph of atoms, which then serves as a node in a larger graph of residues-drug complex. The resulting model is an expressive deep nested graph neural network. We also use pre-trained protein representation powered by the recent effort of learning contextualized protein representation. The experiments are conducted under different settings to evaluate scenarios such as novel drugs or targets. The results demonstrate the effectiveness of the pre-trained protein embedding and the advantages our GEFA in modeling the nested graph for drug-target interaction.


Subject(s)
Drug Development , Neural Networks, Computer , Amino Acid Sequence , Drug Development/methods , Drug Repositioning , Proteins/chemistry
7.
Front Neurol ; 12: 670379, 2021.
Article in English | MEDLINE | ID: mdl-34646226

ABSTRACT

Aim: To use available electronic administrative records to identify data reliability, predict discharge destination, and identify risk factors associated with specific outcomes following hospital admission with stroke, compared to stroke specific clinical factors, using machine learning techniques. Method: The study included 2,531 patients having at least one admission with a confirmed diagnosis of stroke, collected from a regional hospital in Australia within 2009-2013. Using machine learning (penalized regression with Lasso) techniques, patients having their index admission between June 2009 and July 2012 were used to derive predictive models, and patients having their index admission between July 2012 and June 2013 were used for validation. Three different stroke types [intracerebral hemorrhage (ICH), ischemic stroke, transient ischemic attack (TIA)] were considered and five different comparison outcome settings were considered. Our electronic administrative record based predictive model was compared with a predictive model composed of "baseline" clinical features, more specific for stroke, such as age, gender, smoking habits, co-morbidities (high cholesterol, hypertension, atrial fibrillation, and ischemic heart disease), types of imaging done (CT scan, MRI, etc.), and occurrence of in-hospital pneumonia. Risk factors associated with likelihood of negative outcomes were identified. Results: The data was highly reliable at predicting discharge to rehabilitation and all other outcomes vs. death for ICH (AUC 0.85 and 0.825, respectively), all discharge outcomes except home vs. rehabilitation for ischemic stroke, and discharge home vs. others and home vs. rehabilitation for TIA (AUC 0.948 and 0.873, respectively). Electronic health record data appeared to provide improved prediction of outcomes over stroke specific clinical factors from the machine learning models. Common risk factors associated with a negative impact on expected outcomes appeared clinically intuitive, and included older age groups, prior ventilatory support, urinary incontinence, need for imaging, and need for allied health input. Conclusion: Electronic administrative records from this cohort produced reliable outcome prediction and identified clinically appropriate factors negatively impacting most outcome variables following hospital admission with stroke. This presents a means of future identification of modifiable factors associated with patient discharge destination. This may potentially aid in patient selection for certain interventions and aid in better patient and clinician education regarding expected discharge outcomes.

8.
IEEE J Biomed Health Inform ; 25(10): 3911-3920, 2021 10.
Article in English | MEDLINE | ID: mdl-33956636

ABSTRACT

The absence or abnormality of fidgety movements of joints or limbs is strongly indicative of cerebral palsy in infants. Developing computer-based methods for assessing infant movements in videos is pivotal for improved cerebral palsy screening. Most existing methods use appearance-based features and are thus sensitive to strong but irrelevant signals caused by background clutter or a moving camera. Moreover, these features are computed over the whole frame, thus they measure gross whole body movements rather than specific joint/limb motion. Addressing these challenges, we develop and validate a new method for fidgety movement assessment from consumer-grade videos using human poses extracted from short clips. Human poses capture only relevant motion profiles of joints and limbs and are thus free from irrelevant appearance artifacts. The dynamics and coordination between joints are modeled using spatio-temporal graph convolutional networks. Frames and body parts that contain discriminative information about fidgety movements are selected through a spatio-temporal attention mechanism. We validate the proposed model on the cerebral palsy screening task using a real-life consumer-grade video dataset collected at an Australian hospital through the Cerebral Palsy Alliance, Australia. Our experiments show that the proposed method achieves the ROC-AUC score of 81.87%, significantly outperforming existing competing methods with better interpretability.


Subject(s)
Cerebral Palsy , Movement , Australia , Cerebral Palsy/diagnosis , Humans , Infant
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2841-2847, 2021.
Article in English | MEDLINE | ID: mdl-33909569

ABSTRACT

The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN.


Subject(s)
Breast Neoplasms , Genomics/methods , Molecular Sequence Annotation/methods , Neoplasm Recurrence, Local , Precision Medicine/methods , Algorithms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Databases, Genetic , Female , Humans , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Protein Interaction Maps/genetics , Software , Transcriptome/genetics
10.
BMC Genomics ; 21(Suppl 4): 256, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32689932

ABSTRACT

BACKGROUND: Technological advances in next-generation sequencing (NGS) and chromatographic assays [e.g., liquid chromatography mass spectrometry (LC-MS)] have made it possible to identify thousands of microbe and metabolite species, and to measure their relative abundance. In this paper, we propose a sparse neural encoder-decoder network to predict metabolite abundances from microbe abundances. RESULTS: Using paired data from a cohort of inflammatory bowel disease (IBD) patients, we show that our neural encoder-decoder model outperforms linear univariate and multivariate methods in terms of accuracy, sparsity, and stability. Importantly, we show that our neural encoder-decoder model is not simply a black box designed to maximize predictive accuracy. Rather, the network's hidden layer (i.e., the latent space, comprised only of sparsely weighted microbe counts) actually captures key microbe-metabolite relationships that are themselves clinically meaningful. Although this hidden layer is learned without any knowledge of the patient's diagnosis, we show that the learned latent features are structured in a way that predicts IBD and treatment status with high accuracy. CONCLUSIONS: By imposing a non-negative weights constraint, the network becomes a directed graph where each downstream node is interpretable as the additive combination of the upstream nodes. Here, the middle layer comprises distinct microbe-metabolite axes that relate key microbial biomarkers with metabolite biomarkers. By pre-processing the microbiome and metabolome data using compositional data analysis methods, we ensure that our proposed multi-omics workflow will generalize to any pair of -omics data. To the best of our knowledge, this work is the first application of neural encoder-decoders for the interpretable integration of multi-omics biological data.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Metabolome , Neural Networks, Computer , Humans , Models, Statistical
11.
Transl Psychiatry ; 10(1): 162, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448868

ABSTRACT

Precision psychiatry is attracting increasing attention lately as a recognized priority. One of the goals of precision psychiatry is to develop tools capable of aiding a clinically informed psychiatric diagnosis objectively. Cognitive, inflammatory and immunological factors are altered in both bipolar disorder (BD) and schizophrenia (SZ), however, most of these alterations do not respect diagnostic boundaries from a phenomenological perspective and possess great variability in different individuals with the same phenotypic diagnosis and, consequently, none so far has proven to have the ability of reliably aiding in the differential diagnosis of BD and SZ. We developed a probabilistic multi-domain data integration model consisting of immune and inflammatory biomarkers in peripheral blood and cognitive biomarkers using machine learning to predict diagnosis of BD and SZ. A total of 416 participants, being 323, 372, and 279 subjects for blood, cognition and combined biomarkers analysis, respectively. Our multi-domain model performances for the BD vs. control (sensitivity 80% and specificity 71%) and for the SZ vs. control (sensitivity 84% and specificity 81%) pairs were high in general, however, our multi-domain model had only moderate performance for the differential diagnosis of BD and SZ (sensitivity 71% and specificity 73%). In conclusion, our results show that the diagnosis of BD and of SZ, and that the differential diagnosis of BD and SZ can be predicted with possible clinical utility by a computational machine learning algorithm employing blood and cognitive biomarkers, and that their integration in a multi-domain outperforms algorithms based in only one domain. Independent studies are needed to validate these findings.


Subject(s)
Bipolar Disorder , Psychiatry , Schizophrenia , Biomarkers , Bipolar Disorder/diagnosis , Cognition , Humans , Machine Learning , Neuropsychological Tests , Schizophrenia/diagnosis
12.
BMC Med Genomics ; 13(Suppl 3): 20, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32093737

ABSTRACT

BACKGROUND: Breast cancer is a collection of multiple tissue pathologies, each with a distinct molecular signature that correlates with patient prognosis and response to therapy. Accurately differentiating between breast cancer sub-types is an important part of clinical decision-making. Although this problem has been addressed using machine learning methods in the past, there remains unexplained heterogeneity within the established sub-types that cannot be resolved by the commonly used classification algorithms. METHODS: In this paper, we propose a novel deep learning architecture, called DeepTRIAGE (Deep learning for the TRactable Individualised Analysis of Gene Expression), which uses an attention mechanism to obtain personalised biomarker scores that describe how important each gene is in predicting the cancer sub-type for each sample. We then perform a principal component analysis of these biomarker scores to visualise the sample heterogeneity, and use a linear model to test whether the major principal axes associate with known clinical phenotypes. RESULTS: Our model not only classifies cancer sub-types with good accuracy, but simultaneously assigns each patient their own set of interpretable and individualised biomarker scores. These personalised scores describe how important each feature is in the classification of any patient, and can be analysed post-hoc to generate new hypotheses about latent heterogeneity. CONCLUSIONS: We apply the DeepTRIAGE framework to classify the gene expression signatures of luminal A and luminal B breast cancer sub-types, and illustrate its use for genes as well as the GO and KEGG gene sets. Using DeepTRIAGE, we calculate personalised biomarker scores that describe the most important features for classifying an individual patient as luminal A or luminal B. In doing so, DeepTRIAGE simultaneously reveals heterogeneity within the luminal A biomarker scores that significantly associate with tumour stage, placing all luminal samples along a continuum of severity.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/classification , Deep Learning , Breast Neoplasms/genetics , Female , Humans , Kinetochores , Models, Biological , RNA, Neoplasm , RNA-Seq , Transcriptome
13.
IUCrJ ; 5(Pt 6): 830-840, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30443367

ABSTRACT

A method has been developed to measure the similarity between materials, focusing on specific physical properties. The information obtained can be utilized to understand the underlying mechanisms and support the prediction of the physical properties of materials. The method consists of three steps: variable evaluation based on nonlinear regression, regression-based clustering, and similarity measurement with a committee machine constructed from the clustering results. Three data sets of well characterized crystalline materials represented by critical atomic predicting variables are used as test beds. Herein, the focus is on the formation energy, lattice parameter and Curie temperature of the examined materials. Based on the information obtained on the similarities between the materials, a hierarchical clustering technique is applied to learn the cluster structures of the materials that facilitate interpretation of the mechanism, and an improvement in the regression models is introduced to predict the physical properties of the materials. The experiments show that rational and meaningful group structures can be obtained and that the prediction accuracy of the materials' physical properties can be significantly increased, confirming the rationality of the proposed similarity measure.

14.
J Biomed Inform ; 69: 218-229, 2017 05.
Article in English | MEDLINE | ID: mdl-28410981

ABSTRACT

Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, stored in electronic medical records are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors and models patient health state trajectories by the memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces methods to handle irregularly timed events by moderating the forgetting and consolidation of memory. DeepCare also explicitly models medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden - diabetes and mental health - the results show improved prediction accuracy.


Subject(s)
Delivery of Health Care , Electronic Health Records , Neural Networks, Computer , Disease Progression , Health Status , Humans
15.
IEEE J Biomed Health Inform ; 21(1): 22-30, 2017 01.
Article in English | MEDLINE | ID: mdl-27913366

ABSTRACT

Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space.


Subject(s)
Artificial Intelligence , Electronic Health Records , Medical Informatics/methods , Neural Networks, Computer , Software , Databases, Factual , Humans , Models, Theoretical
16.
J Med Internet Res ; 18(12): e323, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27986644

ABSTRACT

BACKGROUND: As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. OBJECTIVE: To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. METHODS: A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. RESULTS: The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. CONCLUSIONS: A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community.


Subject(s)
Biomedical Research/methods , Data Interpretation, Statistical , Machine Learning , Biomedical Research/standards , Humans , Interdisciplinary Studies , Models, Biological
17.
Heliyon ; 2(6): e00119, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27441291

ABSTRACT

BACKGROUND: Preterm birth is a clinical event significant but difficult to predict. Biomarkers such as fetal fibronectin and cervical length are effective, but the often are used only for women with clinically suspected preterm risk. It is unknown whether routinely collected data can be used in early pregnancy to stratify preterm birth risk by identifying asymptomatic women. This paper tries to determine the value of the Victorian Perinatal Data Collection (VPDC) dataset in predicting preterm birth and screening for invasive tests. METHODS: De-identified VPDC report data from 2009 to 2013 were extracted for patients from Barwon Health in Victoria. Logistic regression models with elastic-net regularization were fitted to predict 37-week preterm, with the VPDC antenatal variables as predictors. The models were also extended with two additional variables not routinely noted in the VPDC: previous preterm birth and partner smoking status, testing the hypothesis that these two factors add prediction accuracy. Prediction performance was evaluated using a number of metrics, including Brier scores, Nagelkerke's R(2), c statistic. RESULTS: Although the predictive model utilising VPDC data had a low overall prediction performance, it had a reasonable discrimination (c statistic 0.646 [95% CI: 0.596-0.697] for 37-week preterm) and good calibration (goodness-of-fit p = 0.61). On a decision threshold of 0.2, a Positive Predictive Value (PPV) of 0.333 and a negative predictive value (NPV) of 0.941 were achieved. Data on previous preterm and partner smoking did not significantly improve prediction. CONCLUSIONS: For multiparous women, the routine data contains information comparable to some purposely-collected data for predicting preterm risk. But for nulliparous women, the routine data contains insufficient data related to antenatal complications.

18.
JMIR Med Inform ; 4(3): e25, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27444059

ABSTRACT

OBJECTIVE: Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. METHODS: We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. RESULTS: Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. CONCLUSIONS: In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments.

19.
JMIR Ment Health ; 3(3): e19, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27400764

ABSTRACT

BACKGROUND: Although physical illnesses, routinely documented in electronic medical records (EMR), have been found to be a contributing factor to suicides, no automated systems use this information to predict suicide risk. OBJECTIVE: The aim of this study is to quantify the impact of physical illnesses on suicide risk, and develop a predictive model that captures this relationship using EMR data. METHODS: We used history of physical illnesses (except chapter V: Mental and behavioral disorders) from EMR data over different time-periods to build a lookup table that contains the probability of suicide risk for each chapter of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes. The lookup table was then used to predict the probability of suicide risk for any new assessment. Based on the different lengths of history of physical illnesses, we developed six different models to predict suicide risk. We tested the performance of developed models to predict 90-day risk using historical data over differing time-periods ranging from 3 to 48 months. A total of 16,858 assessments from 7399 mental health patients with at least one risk assessment was used for the validation of the developed model. The performance was measured using area under the receiver operating characteristic curve (AUC). RESULTS: The best predictive results were derived (AUC=0.71) using combined data across all time-periods, which significantly outperformed the clinical baseline derived from routine risk assessment (AUC=0.56). The proposed approach thus shows potential to be incorporated in the broader risk assessment processes used by clinicians. CONCLUSIONS: This study provides a novel approach to exploit the history of physical illnesses extracted from EMR (ICD-10 codes without chapter V-mental and behavioral disorders) to predict suicide risk, and this model outperforms existing clinical assessments of suicide risk.

20.
BMJ Open ; 6(4): e010732, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27121703

ABSTRACT

OBJECTIVES: The Health of the Nation Outcome Scales (HoNOS) are mandated outcome-measures in many mental-health jurisdictions. When HoNOS are used in different care settings, it is important to assess if setting specific bias exists. This article examines the consistency of HoNOS in a sample of psychiatric patients transitioned from acute inpatient care and community centres. SETTING: A regional mental health service with both acute and community facilities. PARTICIPANTS: 111 psychiatric patients were transferred from inpatient care to community care from 2012 to 2014. Their HoNOS scores were extracted from a clinical database; Each inpatient-discharge assessment was followed by a community-intake assessment, with the median period between assessments being 4 days (range 0-14). Assessor experience and professional background were recorded. PRIMARY AND SECONDARY OUTCOME MEASURES: The difference of HoNOS at inpatient-discharge and community-intake were assessed with Pearson correlation, Cohen's κ and effect size. RESULTS: Inpatient-discharge HoNOS was on average lower than community-intake HoNOS. The average HoNOS was 8.05 at discharge (median 7, range 1-22), and 12.16 at intake (median 12, range 1-25), an average increase of 4.11 (SD 6.97). Pearson correlation between two total scores was 0.073 (95% CI -0.095 to 0.238) and Cohen's κ was 0.02 (95% CI -0.02 to 0.06). Differences did not appear to depend on assessor experience or professional background. CONCLUSIONS: Systematic change in the HoNOS occurs at inpatient-to-community transition. Some caution should be exercised in making direct comparisons between inpatient HoNOS and community HoNOS scores.


Subject(s)
Community Mental Health Centers , Hospitals , Mental Disorders/therapy , Mental Health Services , Outcome Assessment, Health Care/standards , Patient Discharge , Psychiatric Status Rating Scales/standards , Adult , Bias , Continuity of Patient Care , Female , Hospitalization , Humans , Inpatients , Male , Middle Aged , Outcome Assessment, Health Care/methods , Psychometrics , Residence Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...