Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2303: 341-347, 2022.
Article in English | MEDLINE | ID: mdl-34626392

ABSTRACT

Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe two simple methods to prepare isotopically enriched HS precursors and HS.


Subject(s)
Heparitin Sulfate/chemistry , Biology , Heparin , Isotopes , Magnetic Resonance Spectroscopy , Proteins
2.
Methods Mol Biol ; 2303: 415-425, 2022.
Article in English | MEDLINE | ID: mdl-34626397

ABSTRACT

Extracellular sulfatases (SULF1 and SULF2) selectively remove 6-O-sulfate groups (6OS) from heparan sulfate proteoglycans (HSPGs) and by this process control important interactions of HSPGs with extracellular factors including morphogens, growth factors, and extracellular matrix (ECM) components. The expression of SULF1 and SULF2 is dynamically regulated during development and is altered in pathological states such as glioblastoma (GBM), a highly malignant and highly invasive brain cancer. SULF2 protein is increased in an important subset of human GBM and it helps regulate receptor tyrosine kinase (RTK) signaling and tumor growth in a murine model of the disease. By altering ligand binding to HSPGs SULF2 has the potential to modify the extracellular availability of factors important in a number of cell processes including proliferation, chemotaxis, and migration. Diffuse invasion of malignant tumor cells into surrounding healthy brain is a characteristic feature of GBM that makes therapy challenging. Here, we describe methods to assess SULF2 expression in human tumor tissue and cell lines and how to relate this to tumor cell invasion.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Humans , Mice , Signal Transduction , Sulfatases/genetics , Sulfatases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
3.
ACS Chem Biol ; 10(6): 1485-94, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25742429

ABSTRACT

The structural diversity of natural sulfated glycosaminoglycans (GAGs) presents major promise for discovery of chemical biology tools or therapeutic agents. Yet, few GAGs have been identified so far to exhibit this promise. We reasoned that a simple approach to identify such GAGs is to explore sequences containing rare residues, for example, 2-O-sulfonated glucuronic acid (GlcAp2S). Genetic algorithm-based computational docking and filtering suggested that GlcAp2S containing heparan sulfate (HS) may exhibit highly selective recognition of antithrombin, a key plasma clot regulator. HS containing only GlcAp2S and 2-N-sulfonated glucosamine residues, labeled as HS2S2S, was chemoenzymatically synthesized in just two steps and was found to preferentially bind antithrombin over heparin cofactor II, a closely related serpin. Likewise, HS2S2S directly inhibited thrombin but not factor Xa, a closely related protease. The results show that a HS containing rare GlcAp2S residues exhibits the unusual property of selective antithrombin activation and direct thrombin inhibition. More importantly, HS2S2S is also the first molecule to activate antithrombin nearly as well as the heparin pentasaccharide although being completely devoid of the critical 3-O-sulfonate group. Thus, this work shows that novel functions and mechanisms may be uncovered by studying rare GAG residues/sequences.


Subject(s)
Antithrombins/chemistry , Glucuronic Acid/chemistry , Glycosaminoglycans/chemistry , Small Molecule Libraries , Algorithms , Binding Sites , Factor Xa/chemistry , Heparin Cofactor II/antagonists & inhibitors , Heparin Cofactor II/chemistry , Heparitin Sulfate/chemistry , Kinetics , Molecular Docking Simulation , Protein Binding
4.
Dis Model Mech ; 6(6): 1365-77, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24057001

ABSTRACT

Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte ß-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs) and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr.


Subject(s)
Cholesterol/biosynthesis , Coenzyme A/metabolism , Fatty Acids, Unsaturated/metabolism , Zebrafish/metabolism , Animals , Diet, Ketogenic/adverse effects , Fatty Liver/etiology , Fish Oils/administration & dosage , Mice
5.
Mol Biosyst ; 8(2): 609-14, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22116385

ABSTRACT

Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.


Subject(s)
Heparitin Sulfate/metabolism , Small Molecule Libraries , Sulfotransferases/metabolism , Heparitin Sulfate/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Oligosaccharides/metabolism , Substrate Specificity
6.
FEBS Lett ; 585(17): 2698-702, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21803043

ABSTRACT

Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner.


Subject(s)
Fibroblast Growth Factor 1/metabolism , Heparitin Sulfate/metabolism , Carbohydrate Sequence , Electrophoretic Mobility Shift Assay , Fibroblast Growth Factor 1/chemistry , Heparitin Sulfate/chemistry , Mass Spectrometry , Molecular Sequence Data , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Receptors, Fibroblast Growth Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...