Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Ambio ; 53(3): 482-496, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37819443

ABSTRACT

Restoration of degraded habitat is frequently used in ecological compensation. However, ecological restoration suffers from innate problems of long delivery times of features shown to be good proxies for biodiversity, e.g., large dead trees. We tested a possible way to circumvent this problem; the translocation of hard-to-come deadwood substrates from an impact area to a compensation area. Following translocation, deadwood density in the compensation area was locally equivalent to the impact area, around 20 m3 ha-1, a threshold for supporting high biodiversity of rare and red-listed species. However, deadwood composition differed between the impact and compensation area, showing a need to include more deadwood types, e.g., late decomposition deadwood, in the translocation scheme. To guide future compensation efforts, the cost for translocation at different spatial scales was calculated. We conclude that translocation of deadwood could provide a cost-efficient new tool for ecological compensation/restoration but that the method needs refinement.


Subject(s)
Ecosystem , Trees , Biodiversity , Forests
3.
Oecologia ; 194(4): 771-780, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33159540

ABSTRACT

Osmoderma eremita is a species of beetle that inhabits hollows in ancient trees, which is a habitat that has decreased significantly during the last century. In southeastern Sweden, we studied the metapopulation dynamics of this beetle over a 25 year period, using capture-mark-recapture. The metapopulation size had been rather stable over time, but in most of the individual trees there had been a positive or negative trend in population development. The probability of colonisation was higher in well-connected trees with characteristics reflecting earlier successional stages, and the probability of extinction higher in trees with larger diameter (i.e. in later successional stages), which is expected from a habitat-tracking metapopulation. The annual tree mortality and fall rates (1.1% and 0.4%, respectively) are lower than the colonisation and extinction rates (5-7%), indicating that some of the metapopulation dynamics are due to the habitat dynamics, but many colonisations and extinctions take place for other reasons, such as stochastic events in small populations. The studied metapopulation occurs in an area with a high density of hollow oaks and where the oak pastures are still managed by grazing. In stands with fewer than ten suitable trees, the long-term extinction risk may be considerable, since only a small proportion of all hollow trees harbours large populations, and the population size in trees may change considerably during a decade.


Subject(s)
Coleoptera , Quercus , Animals , Ecosystem , Population Dynamics , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...