Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Genet Mol Biol ; 42(2): 344-350, 2019.
Article in English | MEDLINE | ID: mdl-31429852

ABSTRACT

Osteogenesis Imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and fracture. Mutations in 20 distinct genes can cause OI, and therefore, the genetic diagnosis of OI is frequently difficult to obtain because of the great number of genes that can be related with this disease. Studies that report the most frequently mutated genes in OI patients can help to improve molecular strategies for diagnosis of the disease. In order to characterize the mutation profile of OI in Brazilian patients, we analyzed 30 unrelated patients through SSCP screening, NGS gene panel, and/or Sanger sequencing for the 11 most frequently mutated genes in the database of mutations, including COL1A1, COL1A2, P3H1, CRTAP, PPIB, SERPINH1, SERPINF1, FKBP10, SP7, WNT1 and IFITM5. Disease-causing variants were identified in COL1A1, COL1A2, FKBP10, P3H1, and IFITM5. A total of 28 distinct mutations were identified, including seven novel changes. Our data show that the analysis of these five genes is able to detect at least 95% of causative mutations in OI disorder from Brazilian population. However, it has to be taken into considerations that distinct populations can have different frequencies of disease-causing variants. Hence, it is important to replicate this study in other groups.

2.
J Mol Neurosci ; 64(3): 471-477, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29504051

ABSTRACT

Genome-wide association studies (GWAS) have associated several genetic variants with late-onset Alzheimer's disease (LOAD), a neurodegenerative disease. Among those, rs3764650 ABCA7, rs6656401 CR1, and rs744373 BIN1 were associated as risk factors for LOAD, while rs11136000 CLU and rs610932 MS4A6A were protective. Recently, several case-control studies have investigated the association of these polymorphisms with AD. However, not all meta-analyses analyzed these variants across different ethnic groups. Therefore, we performed an updated meta-analysis of rs3764650 ABCA7, rs6656401 CR1, rs744373 BIN1, rs11136000 CLU, and rs610932 MS4A6A variants associated with LOAD, considering different ethnic populations. We utilized samples from 38 articles, comprising a total of 24,771 patients and 35,324 controls obtained through the PubMed database. Odds ratios (ORs) with 95% confidence intervals (CI) for polymorphisms were calculated by allelic comparison as an additive genetic model. We validated the risk for LOAD with BIN1 (rs744373), CR1 (rs6656401), and ABCA7 (rs376465), as well as the protective association for MS4A6A (rs610932) and CLU (rs11136000) variants.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Clusterin/genetics , Membrane Proteins/genetics , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Complement 3b/genetics , Tumor Suppressor Proteins/genetics , Humans
3.
J Mol Neurosci ; 62(2): 215-221, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28477215

ABSTRACT

Late-onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disorder that corresponds to most Alzheimer's disease (AD) cases. Inflammation is frequently related to AD, whereas microglial cells are the major phagocytes in the brain and mediate the removal of Aß peptides. Microglial cell dsyregulation might contribute to the formation of amyloid plaques, a hallmark of AD. Genome-wide association studies have reported genetic loci associated with the inflammatory pathway involved in AD. Among them, rs3865444 CD33, rs3764650 ABCA7, rs6656401 CR1, and rs610932 MS4A6A variants in microglial genes are associated with LOAD. These variants are proposed to participate in the clearance of Aß peptides. However, their association with LOAD was not validated in all case-control studies. Thus, the present work aimed to assess the involvement of CD33 (rs3865444), ABCA7 (rs3764650), CR1 (rs6656401), and MS4A6A (rs610932) with LOAD in a sample from southeastern Brazil. The genotype frequencies were assessed in 79 AD patients and 145 healthy elders matched for sex and age. We found that rs3865444 CD33 acts as a protective factor against LOAD. These results support a role for the inflammatory pathway in LOAD.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Alzheimer Disease/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Complement 3b/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Aged , Aged, 80 and over , Brazil , Case-Control Studies , Female , Gene Frequency , Humans , Male , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...