Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203719

ABSTRACT

Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.


Subject(s)
Stem Cells/cytology , Tooth/cytology , Animals , Biomarkers/metabolism , Bone Regeneration , Humans , Organoids/cytology , Osteogenesis
2.
Glia ; 69(2): 377-391, 2021 02.
Article in English | MEDLINE | ID: mdl-32876968

ABSTRACT

Genetic deletion of cannabinoid CB1 receptors or diacylglycerol lipase alpha (DAGLa), the main enzyme involved in the synthesis of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), produced profound phenotypes in animal models of depression-related behaviors. Furthermore, clinical studies have shown that antagonists of CB1 can increase the incidence and severity of major depressive episodes. However, the underlying pathomechanisms are largely unknown. In this study, we have focused on the possible involvement of astrocytes. Using the highly sensitive RNAscope technology, we show for the first time that a subpopulation of astrocytes in the adult mouse brain expresses Dagla, albeit at low levels. Targeted lipidomics revealed that astrocytic DAGLa only accounts for a minor percentage of the steady-state brain 2-AG levels and other arachidonic acid derived lipids like prostaglandins. Nevertheless, the deletion of Dagla in adult mouse astrocytes had profound behavioral consequences with significantly increased depressive-like behavioral responses and striking effects on maternal behavior, corresponding with increased levels of serum progesterone and estradiol. Our findings therefore indicate that lipids from the DAGLa metabolic axis in astrocytes play a key regulatory role in affective behaviors.


Subject(s)
Astrocytes , Animals , Depressive Disorder, Major , Endocannabinoids , Female , Lipoprotein Lipase/genetics , Mice , Mice, Knockout , Receptor, Cannabinoid, CB1
SELECTION OF CITATIONS
SEARCH DETAIL
...