Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065174

ABSTRACT

We have improved a polarized electron source in which unpolarized electrons undergo collisions with a mixture of buffer gas molecules and optically spin-polarized Rb atoms. With a nitrogen buffer gas, the source reliably provides spin polarization between 15% and 25% with beam currents >4 µA. Vacuum pump upgrades mitigate problems caused by denatured diffusion pump oil, leading to longer run times. A new differential pumping scheme allows the use of higher buffer gas pressures up to 800 mTorr. With a new optics layout, the Rb polarization is continuously monitored by a probe laser and improved pump laser power provides more constant high polarization. We have implemented an einzel lens to better control the energy of the electrons delivered to the target chamber and to preferentially select electron populations of higher polarization. The source is designed for studies of biologically relevant chiral molecule samples, which can poison photoemission-based GaAs polarized electron sources at very low partial pressures. It operates adjacent to a target chamber that rises to pressures as high as 10-4 Torr and has been implemented in a first experiment with chiral cysteine targets.

2.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37581415

ABSTRACT

We performed experiments searching for chirality-dependent secondary electron emission for a 141 eV longitudinally spin-polarized electron beam incident on a thick solid cysteine target. We determined the secondary electron yield by measuring the positive current produced when the cysteine target was negatively biased. No spin-dependent effects to a level of 10-3 were found for the secondary electron emission yield.

3.
Appl Opt ; 59(9): 2715-2724, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32225820

ABSTRACT

The precision by which an electron spin polarization measurement can be made using a noble-gas polarimeter depends directly on the accuracy of a light-polarization measurement. Since the electron-noble gas collisions occur in a vacuum chamber and the optical polarimeter is generally outside the chamber, this work examines the effect the vacuum window has on the perceived optical polarization. A model light source, lens system, and optical polarimeter are used that approximate the situation found in a typical atomic physics experiment. It was demonstrated that a pressure difference of 1 atm on a lens will alter the perceived polarization by as much as 0.05% with typical borosilicate (BK) lenses. This effect was demonstrated to scale with the thickness of the lens used and changes signs when the direction of the stress is reversed.

4.
Appl Opt ; 47(13): 2465-9, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449314

ABSTRACT

A method for the active feedback reduction of optical instrumental intensity asymmetries is presented. It is based on the fast chopping of two spatially separated beams of light with orthogonal linear polarizations that are recombined and passed through a quarter-wave plate to yield a single beam with rapidly flipping helicity. Active electro-optic feedback has been successfully employed to maintain this asymmetry below 10(-5).

SELECTION OF CITATIONS
SEARCH DETAIL
...