Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2640, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531850

ABSTRACT

Climate change induced shifts in treeline position, both towards higher altitudes and latitudes induce changes in soil organic matter. Eventually, soil organic matter is transported to alpine and subarctic lakes with yet unknown consequences for dissolved organic matter (DOM) diversity and processing. Here, we experimentally investigate the consequences of treeline shifts by amending subarctic and temperate alpine lake water with soil-derived DOM from above and below the treeline. We use ultra-high resolution mass spectrometry (FT-ICR MS) to track molecular DOM diversity (i.e., chemodiversity), estimate DOM decay and measure bacterial growth efficiency. In both lakes, soil-derived DOM from below the treeline increases lake DOM chemodiversity mainly through the enrichment with polyphenolic and highly unsaturated compounds. These compositional changes are associated with reductions in bulk and compound-level DOM reactivity and reduced bacterial growth efficiency. Our results suggest that treeline advancement has the potential to enrich a large number of lake ecosystems with less biodegradable DOM, affecting bacterial community function and potentially altering the biogeochemical cycling of carbon in lakes at high latitudes and altitudes.


Subject(s)
Dissolved Organic Matter , Lakes , Lakes/chemistry , Ecosystem , Altitude , Soil/chemistry
2.
Environ Sci Technol ; 57(36): 13463-13472, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37646447

ABSTRACT

Aquatic dissolved organic matter (DOM) is a crucial component of the global carbon cycle, and the extent to which DOM escapes mineralization is important for the transport of organic carbon from the continents to the ocean. DOM persistence strongly depends on its molecular properties, but little is known about which specific properties cause the continuum in reactivity among different dissolved molecules. We investigated how DOM fractions, separated according to their hydrophobicity, differ in biodegradability across three different inland water systems. We found a strong negative relationship between hydrophobicity and biodegradability, consistent for the three systems. The most hydrophilic fraction was poorly recovered by solid-phase extraction (SPE) (3-28% DOC recovery) and was thus selectively missed by mass spectrometry analysis during SPE. The change in DOM composition after incubation was very low according to SPE-ESI (electrospray ionization)-mass spectrometry (14% change, while replicates had 11% change), revealing that this method is sub-optimal to assess DOM biodegradability, regardless of fraction hydrophobicity. Our results demonstrate that SPE-ESI mass spectrometry does not detect the most hydrophilic and most biodegradable species. Hence, they question our current understanding of the relationships between DOM biodegradability and its molecular composition, which is built on the use of this method.


Subject(s)
Carbon , Dissolved Organic Matter , Carbon Cycle , Fresh Water , Spectrometry, Mass, Electrospray Ionization
3.
Glob Chang Biol ; 28(18): 5427-5440, 2022 09.
Article in English | MEDLINE | ID: mdl-35694903

ABSTRACT

Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60°C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.


Subject(s)
Atmosphere , Lakes , Climate Change , Global Warming , Methane , Temperature
4.
Carbon Balance Manag ; 16(1): 10, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33837862

ABSTRACT

The Paris agreement identifies the importance of the conservation, or better, increase of the land carbon sink. In this respect, the mitigation policies of many forest rich countries rely heavily on products from forests as well as on the land sink. Here we demonstrate that Sweden's land sink, which is critical in order to achieve zero net emissions by 2045 and negative emissions thereafter, is reduced to less than half when accounting for emissions from wetlands, lakes and running waters. This should have implications for the development of Sweden's mitigation policy. National as well as the emerging global inventory of sources and sinks need to consider the entire territory to allow accurate guidance of future mitigation of climate change.

5.
J Anim Ecol ; 90(4): 834-845, 2021 04.
Article in English | MEDLINE | ID: mdl-33340096

ABSTRACT

According to apparent competition theory, sharing a predator should cause indirect interactions among prey that can affect the structure and the dynamics of natural communities. Though shifts in prey dominance and predator resource use along environmental gradients are rather common, empirical evidence on the role of indirect prey-prey interactions through shared predation particularly with increasing productivity, is still scarce. In an 8-week lake mesocosm experiment, we manipulated both the addition of inorganic nutrients and the presence of generalist fish predators (crucian carp, Carassius carassius L.), to test for the effects of indirect interactions through shared predation along a productivity gradient. We found that apparent mutualism (indirect positive interaction) between benthic and pelagic prey strongly affected short-term responses of aquatic food webs to increasing productivity in the presence of a generalist fish. Increasing productivity favoured the relative abundance of benthic prey, following trends in natural productive lake systems. This led to a shift in fish selectivity from pelagic to benthic prey driven by changes in fish behaviour, which resulted in apparent mutualism due to the lower and delayed top-down control of pelagic prey at increasing productivity. Our results show empirical evidence that the coupling of multiple production pathways can lead to strong indirect interactions through shared predation, whereby prey dynamics on short time-scales are highly dependent on the foraging behaviour of generalist predators. This mechanism may play an important role in short-term responses of food webs across environmental gradients.


Subject(s)
Food Chain , Symbiosis , Animals , Fishes , Lakes , Predatory Behavior
7.
Trends Ecol Evol ; 36(2): 113-122, 2021 02.
Article in English | MEDLINE | ID: mdl-33168153

ABSTRACT

The global carbon cycle connects organic matter (OM) pools in soil, freshwater, and marine ecosystems with the atmosphere, thereby regulating their size and reactivity. Due to the complexity of biogeochemical processes and historically compartmentalized disciplines, ecosystem-specific conceptualizations of OM degradation have emerged independently of developments in other ecosystems. Recent discussions regarding the relative importance of molecular composition and ecosystem properties on OM degradation have diverged in opposing directions across subdisciplines, leaving our understanding inconsistent. Ecosystem-dependent theories are problematic since properties unique to an ecosystem may change in response to anthropogenic stressors, including climate change. The next breakthrough in our understanding of OM degradation requires a shift in focus towards developing a unified theory of controls on OM across ecosystems.


Subject(s)
Concept Formation , Ecosystem , Carbon , Carbon Cycle , Climate Change , Soil
8.
Anal Chem ; 92(20): 14210-14218, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32940031

ABSTRACT

Electrospray ionization (ESI) operating in the negative mode coupled to high-resolution mass spectrometry is the most popular technique for the characterization of dissolved organic matter (DOM). The vast molecular heterogeneity and the functional group diversity of this complex mixture prevents the efficient ionization of the organic material by a single ionization source, so the presence of uncharacterized material is unavoidable. The extent of this poorly ionizable pool of carbon is unknown, is presumably variable between samples, and can only be assessed by the combination of analysis with a uniform detection method. Charged aerosol detection (CAD), whose response is proportional to the amount of nonvolatile material and is independent from the physicochemical properties of the analytes, is a suitable candidate. In this study, a fulvic acid mixture was fractionated and analyzed by high-pressure liquid chromatography-mass spectrometry in order to investigate the polarity and size distributions of highly and poorly ionizable material in the sample. Additionally, DOM samples of terrestrial and marine origins were analyzed to evaluate the variability of these pools across the land-sea aquatic continuum. The relative response factor values indicated that highly ionizable components of aquatic DOM mixtures are more hydrophilic and have lower molecular weight than poorly ionizable components. Additionally, a discrepancy between the samples of terrestrial and marine origins was found, indicating that marine samples are better represented by ESI than terrestrial samples, which have an abundant portion of hydrophobic poorly ionizable material.

9.
Glob Chang Biol ; 26(10): 5705-5715, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32681718

ABSTRACT

Eutrophication of fresh waters results in increased CO2 uptake by primary production, but at the same time increased emissions of CH4 to the atmosphere. Given the contrasting effects of CO2 uptake and CH4 release, the net effect of eutrophication on the CO2 -equivalent balance of fresh waters is not clear. We measured carbon fluxes (CO2 and CH4 diffusion, CH4 ebullition) and CH4 oxidation in 20 freshwater mesocosms with 10 different nutrient concentrations (total phosphorus range: mesotrophic 39 µg/L until hypereutrophic 939 µg/L) and planktivorous fish in half of them. We found that the CO2 -equivalent balance had a U-shaped relationship with productivity, up to a threshold in hypereutrophic systems. CO2 -equivalent sinks were confined to a narrow range of net ecosystem production (NEP) between 5 and 19 mmol O2  m-3  day-1 . Our findings indicate that eutrophication can shift fresh waters from sources to sinks of CO2 -equivalents due to enhanced CO2 uptake, but continued eutrophication enhances CH4 emission and transforms freshwater ecosystems to net sources of CO2 -equivalents to the atmosphere. Nutrient enrichment but also planktivorous fish presence increased productivity, thereby regulating the resulting CO2 -equivalent balance. Increasing planktivorous fish abundance, often concomitant with eutrophication, will consequently likely affect the CO2 -equivalent balance of fresh waters.


Subject(s)
Carbon Dioxide , Ecosystem , Animals , Carbon Cycle , Fresh Water , Methane
10.
Sci Rep ; 10(1): 8471, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439876

ABSTRACT

The pool of dissolved organic carbon (DOC), is one of the main regulators of the ecology and biogeochemistry of inland water ecosystems, and an important loss term in the carbon budgets of land ecosystems. We used a novel machine learning technique and global databases to test if and how different environmental factors contribute to the variability of in situ DOC concentrations in lakes. In order to estimate DOC in lakes globally we predicted DOC in each lake with a surface area larger than 0.1 km2. Catchment properties and meteorological and hydrological features explained most of the variability of the lake DOC concentration, whereas lake morphometry played only a marginal role. The predicted average of the global DOC concentration in lake water was 3.88 mg L-1. The global predicted pool of DOC in lake water was 729 Tg from which 421 Tg was the share of the Caspian Sea. The results provide global-scale evidence for ecological, climate and carbon cycle models of lake ecosystems and related future prognoses.

11.
Sci Rep ; 8(1): 16060, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375497

ABSTRACT

Dissolved organic matter (DOM) from soils enters the aquatic environment via headwater streams. Thereafter, it is gradually transformed, removed by sedimentation, and mineralised. Due to the proximity to the terrestrial source and short water residence time, the extent of transformation is minimal in headwaters. DOM has variable composition across inland waters, but the amount of variability in the terrestrial end member is unknown. This gap in knowledge is crucial considering the potential impact large variability would have on modelling DOM degradation. Here, we used a novel liquid chromatography -mass spectrometry method to characterise DOM in 74 randomly selected, forested headwater streams in an 87,000 km2 region of southeast Sweden. We found a large degree of sample similarity across this region, with Bray-Curtis dissimilarity values averaging 8.4 ± 3.0% (mean ± SD). The identified variability could be reduced to two principle coordinates, correlating to varying groundwater flow-paths and regional mean temperature. Our results indicate that despite reproducible effects of groundwater geochemistry and climate, the composition of DOM is remarkably similar across catchments already as it leaves the terrestrial environment, rather than becoming homogeneous as different headwaters and sub-catchments mix.

12.
Environ Sci Technol ; 52(4): 2091-2099, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29241333

ABSTRACT

Natural dissolved organic matter (DOM) is an ultracomplex mixture that is essential to global carbon cycling but is poorly understood because of its complexity. The most powerful tool for the DOM characterization is high-resolution mass spectrometry (HRMS) generally combined to direct infusion (DI) as sample introduction. Liquid chromatography (LC) represents a compelling alternative to DI; however, state-of-the-art techniques involve only offline LC-HRMS approaches, which have important logistical drawbacks that make DOM analysis more challenging. This study introduces a new method based on online coupling of liquid chromatography to high resolution mass spectrometry, able to overcome the disadvantages of usual approaches. It is characterized by high reproducibility (% Bray-Curtis dissimilarity among replicates ≈ 2.5%), and it reduces transient complexity and contaminant interferences, thus increasing the signal-to-noise ratio (S/N), leading to the identification of an overall larger number of formulas in the mixture. Moreover, the application of an in silico fractionation prior to the statistical analysis allows an easy, flexible, fast, and detailed comparison of DOM samples from a variety of sources with a single chromatographic run.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Reproducibility of Results
13.
Water Res ; 129: 94-104, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29132125

ABSTRACT

Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO3-), while photoreactions mediated by CDOM triplet states (3CDOM*) and, to a lesser extent, singlet oxygen (1O2) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3CDOM* will also increase, promoting its importance in photochemical pathways even more.


Subject(s)
Lakes , Models, Chemical , Organic Chemicals/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Carbonates , Eutrophication , Hydroxyl Radical/chemistry , Kinetics , Photochemical Processes , Singlet Oxygen , Sunlight , Sweden
14.
Nat Commun ; 8(1): 1694, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29162815

ABSTRACT

Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06-0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.

15.
Environ Sci Technol ; 51(20): 11571-11579, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28914530

ABSTRACT

The reactivity continuum (RC) model is a powerful statistical approach for describing the apparent kinetics of bulk organic matter (OM) decomposition. Here, we used ultrahigh resolution mass spectrometry data to evaluate the main premise of the RC model, namely that there is a continuous spectrum of reactivity within bulk OM, where each individual reactive type undergoes exponential decay. We performed a 120 day OM decomposition experiment on lake water, with an untreated control and a treatment preexposed to UV light, and described the loss of bulk dissolved organic carbon with RC modeling. The behavior of individual molecular formulas was described by fitting the single exponential model to the change in peak intensities over time. The range of the empirically derived apparent exponential decay coefficients (kexp) was indeed continuous. The character of the corresponding distribution, however, differed from the conceptual expectations, due to the effects of intrinsic averaging, overlaps in formula-specific loss and formation rates, and the limitation of the RC model to include apparently accumulating compounds in the analysis. Despite these limitations, both the RC model-simulated and empirical (mass spectrometry-derived) distributions of kexp captured the effects of preexposure to UV light. Overall, we present experimental evidence that the reactivity continuum within bulk OM emerges from a range of reactivity of numerous individual components. This constitutes direct empirical support for the major assumption behind the RC model of the natural OM decomposition.


Subject(s)
Carbon , Mass Spectrometry , Fresh Water , Kinetics
16.
Anal Chem ; 88(15): 7698-704, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27400998

ABSTRACT

We investigated the application of the LTQ-Orbitrap mass spectrometer (LTQ-Velos Pro, Thermo Fisher) for resolving complex mixtures of natural aquatic dissolved organic matter (DOM) and compared this technique to the more established state-of-the-art technique, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS, Bruker Daltonics), in terms of the distribution of molecular masses detected and the reproducibility of the results collected. The Orbitrap was capable of excellent reproducibility: Bray-Curtis dissimilarity between duplicate measurements was 2.85 ± 0.42% (mean ± standard deviation). The Orbitrap was also capable of the detection of most major ionizable organic molecules in typical aquatic mixtures, with the exception of most sulfur and phosphorus containing masses. This result signifies that the Orbitrap is an appropriate technique for the investigation of very subtle biogeochemical processing of bulk DOM. The lower costs (purchase and maintenance) and wider availability of Orbitrap mass spectrometers in university departments means that the tools necessary for research into DOM processing at the molecular level should be accessible to a much wider group of scientists than before. The main disadvantage of the technique is that substantially fewer molecular formulas can be resolved from a complex mixture (roughly one third as many), meaning some loss of information. In balance, most biogeochemical studies that aim at molecularly fingerprinting the source of natural DOM could be satisfactorily carried out with Orbitrap mass spectrometry. For more targeted metabolomic studies where individual compounds are traced through natural systems, FTICR-MS remains advantageous.

17.
Sci Total Environ ; 535: 85-93, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25813090

ABSTRACT

Due to the rapidly rising production and usage of nano-enabled products, aquatic environments are increasingly exposed to engineered nanoparticles (ENPs), causing concerns about their potential negative effects. In this study we assessed the effects of uncoated titanium dioxide nanoparticles (TiO2NPs) on the growth and activity of bacterial communities of three Swedish lakes featuring different chemical characteristics such as dissolved organic carbon (DOC) concentration, pH and elemental composition. TiO2NP exposure concentrations were 15, 100, and 1000 µg L(-1), and experiments were performed in situ under three light regimes: darkness, photosynthetically active radiation (PAR), and ambient sunlight including UV radiation (UVR). The nanoparticles were most stable in lake water with high DOC and low chemical element concentrations. At the highest exposure concentration (1000 µg L(-1) TiO2NP) the bacterial abundance was significantly reduced in all lake waters. In the medium and high DOC lake waters, exposure concentrations of 100 µg L(-1) TiO2NP caused significant reductions in bacterial abundance. The cell-specific bacterial activity was significantly enhanced at high TiO2NP exposure concentrations, indicating the loss of nanoparticle-sensitive bacteria and a subsequent increased activity by tolerant ones. No UV-induced phototoxic effect of TiO2NP was found in this study. We conclude that in freshwater lakes with high DOC and low chemical element concentrations, uncoated TiO2NPs show an enhanced stability and can significantly reduce bacterial abundance at relatively low exposure concentrations.


Subject(s)
Lakes/chemistry , Nanoparticles/toxicity , Titanium/toxicity , Water Microbiology , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Lakes/microbiology , Sweden
18.
Science ; 345(6199): 870, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25146267
19.
Nat Commun ; 5: 3804, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24787272

ABSTRACT

Despite the small continental coverage of lakes, they are hotspots of carbon cycling, largely due to the processing of terrestrially derived dissolved organic matter (DOM). As DOM is an amalgam of heterogeneous compounds comprising gradients of microbial and physicochemical reactivity, the factors influencing DOM processing at the molecular level and the resulting patterns in DOM composition are not well understood. Here we show, using ultrahigh-resolution mass spectrometry to unambiguously identify 4,032 molecular formulae in 120 lakes across Sweden, that the molecular composition of DOM is shaped by precipitation, water residence time and temperature. Terrestrially derived DOM is selectively lost as residence time increases, with warmer temperatures enhancing the production of nitrogen-containing compounds. Using biodiversity concepts, we show that the molecular diversity of DOM, or chemodiversity, increases with DOM and nutrient concentrations. The observed molecular-level patterns indicate that terrestrially derived DOM will become more prevalent in lakes as climate gets wetter.

20.
PLoS One ; 9(2): e88104, 2014.
Article in English | MEDLINE | ID: mdl-24505396

ABSTRACT

The color of freshwaters, often measured as absorbance, influences a number of ecosystem services including biodiversity, fish production, and drinking water quality. Many countries have recently reported on increasing trends of water color in freshwaters, for which drivers are still not fully understood. We show here with more than 58000 water samples from the boreal and hemiboreal region of Sweden and Canada that absorbance of filtered water (a420) co-varied with dissolved organic carbon (DOC) concentrations (R²  = 0.85, P<0.0001), but that a420 relative to DOC is increased by the presence of iron (Fe). We found that concentrations of Fe significantly declined with increasing water retention in the landscape, resulting in significantly lower Fe concentrations in lakes compared to running waters. The Fe loss along the aquatic continuum corresponded to a proportional loss in a420, suggesting a tight biogeochemical coupling between colored dissolved organic matter and Fe. Since water is being flushed at increasing rates due to enhanced runoff in the studied regions, diminished loss of Fe along the aquatic continuum may be one reason for observed trends in a420, and in particular in a420/DOC increases. If trends of increased Fe concentrations in freshwaters continue, water color will further increase with various effects on ecosystem services and biogeochemical cycles.


Subject(s)
Carbon/analysis , Fresh Water/analysis , Iron/analysis , Color , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...