Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 14(11): e0224607, 2019.
Article in English | MEDLINE | ID: mdl-31711071

ABSTRACT

The ecological theory of island biogeography suggests that mainland populations should be more genetically divergent from those on large and distant islands rather than from those on small and close islets. Some island populations do not evolve in a linear way, but the process of divergence occurs more rapidly because they undergo a series of phenotypic changes, jointly known as the Island Syndrome. A special case is Reversed Island Syndrome (RIS), in which populations show drastic phenotypic changes both in body shape, skin colouration, age of sexual maturity, aggressiveness, and food intake rates. The populations showing the RIS were observed on islets nearby mainland and recently raised, and for this they are useful models to study the occurrence of rapid evolutionary change. We investigated the timing and mode of evolution of lizard populations adapted through selection on small islets. For our analyses, we used an ad hoc model system of three populations: wild-type lizards from the mainland and insular lizards from a big island (Capri, Italy), both Podarcis siculus siculus not affected by the syndrome, and a lizard population from islet (Scopolo) undergoing the RIS (called P. s. coerulea because of their melanism). The split time of the big (Capri) and small (Scopolo) islands was determined using geological events, like sea-level rises. To infer molecular evolution, we compared five complete mitochondrial genomes for each population to reconstruct the phylogeography and estimate the divergence time between island and mainland lizards. We found a lower mitochondrial mutation rate in Scopolo lizards despite the phenotypic changes achieved in approximately 8,000 years. Furthermore, transcriptome analyses showed significant differential gene expression between islet and mainland lizard populations, suggesting the key role of plasticity in these unpredictable environments.


Subject(s)
Biological Evolution , Gene Expression , Genetic Variation , Lizards/genetics , Animals , Genetics, Population , Islands , Italy , Phylogeography
3.
Sci Rep ; 9(1): 16708, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31705043

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 1288, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718570

ABSTRACT

The Wall Gecko shows heterogeneous colour pattern, which may vary among individuals, depending on the time of day and on the habitat segregation. Nocturnal pale geckos live exclusively on walls. Diurnal dark geckos preferentially live on olive tree trunks, demonstrating an ability to change skin colour that is superior to that of the pale gecko and allows diurnal geckos becoming camouflaged on the diverse substrates occupied during the day. In our study, the nocturnal/pale/wall and diurnal/dark/trunk geckos could be considered the extremes of an ecological cline of morphological variation on which divergent selection may be acting. Combining the effect of balancing selection on nocturnal geckos and disruptive selection between two sympatric populations could lead to speciation. All geckos analysed here belong to the same species, as confirmed by genetic characterization, however diurnal and nocturnal gecko populations seem to be in an early stage of incipient speciation. These two different morphs still combine genes, as revealed by neutral genetic markers, yet they show complete separation according to the analyses of mtDNA coding genes. Experimental results show that diurnal and nocturnal geckos do not swap their niches, likely because the predation pressure causes severe selection for background matching. Genomic analysis of complete mtDNA suggests that nocturnal geckos seem to be under balancing selection perhaps due to the narrow niche in which they live, whereas the daytime population has more opportunity in fitting into the multiple available niches, and they experience positive selection. Here we hypothesize that the ecological segregation that we are witnessing between the nocturnal and diurnal geckos, can lead to a ecological speciation.


Subject(s)
Adaptation, Physiological , DNA, Mitochondrial/genetics , Genetic Speciation , Lizards/genetics , Animals
5.
PLoS One ; 12(9): e0185227, 2017.
Article in English | MEDLINE | ID: mdl-28953924

ABSTRACT

Some insular lizards show a high degree of differentiation from their conspecific mainland populations, like Licosa island lizards, which are described as affected by Reversed Island Syndrome (RIS). In previous works, we demonstrated that some traits of RIS, as melanization, depend on a differential expression of gene encoding melanocortin receptors. To better understand the basis of syndrome, and providing raw data for future investigations, we generate the first de novo transcriptome of the Italian wall lizard. Comparing mainland and island transcriptomes, we link differences in life-traits to differential gene expression. Our results, taking together testis and brain sequences, generated 275,310 and 269,885 transcripts, 18,434 and 21,606 proteins in Gene Ontology annotation, for mainland and island respectively. Variant calling analysis identified about the same number of SNPs in island and mainland population. Instead, through a differential gene expression analysis we found some putative genes involved in syndrome more expressed in insular samples like Major Histocompatibility Complex class I, Immunoglobulins, Melanocortin 4 receptor, Neuropeptide Y and Proliferating Cell Nuclear Antigen.


Subject(s)
Islands , Lizards/genetics , Pigmentation/genetics , Transcriptome/genetics , Animals , Gene Expression Profiling , Gene Ontology , Italy , Male , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
6.
Zoology (Jena) ; 123: 11-15, 2017 08.
Article in English | MEDLINE | ID: mdl-28550945

ABSTRACT

Animals recognize their surrounding environments through the sense of smell by detecting thousands of chemical odorants. Wild boars (Sus scrofa) completely depend on their ability to recognize chemical odorants: to detect food, during scavenging and searching partners, during breeding periods and to avoid potential predators. Wild piglets must be prepared for the chemical universe that they will enter after birth, and they show intense neuronal activity in the olfactory mucosa. With this in mind, we investigated the morpho-functional embryonic development of the olfactory mucosa in the wild boar (in five stages before birth). Using mRNA expression analysis of olfactory marker protein and neuropeptide Y, involved in the function of olfactory sensory neurons, we show early activation of the appropriate genes in the wild boar. We hypothesize olfactory pre-birth development in wild boar is highly adaptive.


Subject(s)
Olfactory Mucosa/embryology , Smell/physiology , Sus scrofa/embryology , Animals , Female , Fetus/physiology , Gene Expression Regulation, Developmental/physiology , Olfactory Mucosa/metabolism , Pregnancy , Sus scrofa/physiology
7.
Evol Appl ; 9(6): 769-76, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27330553

ABSTRACT

Artificial selection affects phenotypes differently by natural selection. Domestic traits, which pass into the wild, are usually negatively selected. Yet, exceptionally, this axiom may fail to apply if genes, from the domestic animals, increase fertility in the wild. We studied a rare case of a wild boar population under the framework of Wright's interdemic selection model, which could explain gene flow between wild boar and pig, both considered as demes. We analysed the MC1R gene and microsatellite neutral loci in 62 pregnant wild boars as markers of hybridization, and we correlated nucleotide mutations on MC1R (which are common in domestic breeds) to litter size, as an evaluation of fitness in wild sow. Regardless of body size and phyletic effects, wild boar sows bearing nonsynonymous MC1R mutations produced larger litters. This directly suggests that artificially selected traits reaching wild populations, through interdemic gene flow, could bypass natural selection if and only if they increase the fitness in the wild.

SELECTION OF CITATIONS
SEARCH DETAIL
...