Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 107(10): 2949-2961, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36825311

ABSTRACT

The efficacy of currently available fungicides against apple scab, caused by the fungal pathogen Venturia inaequalis, was investigated in relation to when growers spray (ahead, during, or after rain) and how the spray reaches the target. The adaxial surface of individual leaves of potted trees were sprayed and then inoculated with ascospores of V. inaequalis, to establish dose-response curves for each fungicide. Discriminatory doses providing 50 and 90% symptom inhibition (EC50 and EC90, respectively) in sprays mimicking applications ahead of rain were used for experiments imitating alternative spray timings. Sprays were either applied during the spore germination phase or early or late after infection onset (either 336 or 672 degree-hours after inoculation, respectively), corresponding to grower spray schedules. Experiments were also carried out with sprays applied on the abaxial leaf surface to investigate fungicide efficacy through the leaf lamina. For all fungicides, the best efficacy was observed when sprays were applied during germination, followed by applications ahead of inoculation. Some products maintained equal or better efficacy at early infection, while efficacy in late infection dropped for all products, clearly indicating that this spray timing should be avoided. Some products with postinfection efficacy also showed translaminar efficacy. The close relationship found between EC50 of the active ingredients on potted trees and the label rate could help improve spraying decisions and reduce costs.


Subject(s)
Ascomycota , Fungicides, Industrial , Malus , Fungicides, Industrial/pharmacology , Malus/microbiology , Ascomycota/physiology , Plant Diseases/prevention & control , Plant Leaves
2.
Plant Dis ; 104(2): 465-473, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31821100

ABSTRACT

In many areas where spring is wet, fungicides are applied in relation to rain events that trigger ejection of ascospores of Venturia inaequalis, which cause primary infections of apple scab. Past studies established the rate of ejection during rain in relation to light and temperature, and determined the wetting time required for infection. Simulation software uses this information to calculate risk and help time sprays accordingly. However, the distribution of the infection time required by a population of spores landed on leaves was never studied, and assumptions were used. To estimate this, we inoculated ascospores of V. inaequalis on potted trees at different temperatures for specific wetting times. Lesions were enumerated after incubation. Lesions increased with wetness time and leveled off once the slowest spores infected the host, closely matching the monomolecular model. Wetness hours were best adjusted for temperature using the Yin equation. The minimum infection time on the youngest leaves was about 5 h, matching results from previous studies, whereas half the lesions appeared after 7 h of infection. Infection times for leaves with ontogenic resistance were longer. Our results improve current software estimates and may improve spraying decisions.


Subject(s)
Ascomycota , Fungicides, Industrial , Malus , Plant Diseases , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...