Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555741

ABSTRACT

This work aims to improve the corrosion protection features of poly(phenylene methylene) (PPM) by sidechain engineering inserting methoxy units along the polymer backbone. The influence of side methoxy groups at different concentrations (4.6% mol/mol and 9% mol/mol) on the final polymer properties was investigated by structural and thermal characterization of the resulting copolymers: co-PPM 4.6% and co-PPM 9%, respectively. Then, coatings were processed by hot pressing the polymers powder on aluminum alloy AA2024 and corrosion protection properties were evaluated exposing samples to a 3.5% w/v NaCl aqueous solution. Anodic polarization tests evidenced the enhanced corrosion protection ability (i.e., lower current density) by increasing the percentage of the co-monomer. Coatings made with co-PPM 9% showed the best protection performance with respect to both PPM blend and PPM co-polymers reported so far. Electrochemical response of aluminum alloy coated with co-PPM 9% was monitored over time under two "artificially-aged" conditions, that are: (i) a pristine coating subjected to potentiostatic anodic polarization cycles, and (ii) an artificially damaged coating at resting condition. The first scenario points to accelerating the corrosion process, the second one models damage of the coating potentially occurring either due to natural deterioration or due to any accidental scratching of the polymer layer. In both cases, an intrinsic self-healing phenomenon was indirectly argued by the time evolution of the impedance and of the current density of the coated systems. The degree of restoring to the "factory conditions" by co-polymer coatings after self-healing events is eventually discussed.


Subject(s)
Aluminum , Coated Materials, Biocompatible , Corrosion , Coated Materials, Biocompatible/chemistry , Alloys/chemistry , Polymers
2.
Polymers (Basel) ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080534

ABSTRACT

Poly(phenylene methylene) (PPM) is a multifunctional polymer featuring hydrophobicity, high thermal stability, fluorescence and thermoplastic processability. Accordingly, smart corrosion resistant PPM-based coatings (blend and copolymer) were prepared and applied by hot pressing on aluminum alloy AA2024. The corrosion protection properties of the coatings and their dependence on coating thickness were evaluated for both strategies employed. The accelerated cyclic electrochemical technique (ACET), based on a combination of electrochemical impedance spectroscopy (EIS), cathodic polarizations and relaxation steps, was used as the main investigating technique. At the coating thickness of about 50 µm, both blend and copolymer PPM showed effective corrosion protection, as reflected by |Z|0.01Hz of about 108 Ω cm2 over all the ACET cycles. In contrast, when the coating thickness was reduced to 30 µm, PPM copolymer showed neatly better corrosion resistance than blended PPM, maintaining |Z|0.01Hz above 108 Ω cm2 with respect to values below 106 Ω cm2 of the latter. Furthermore, the analysis of many electrochemical key features, in combination with the optical investigation of the coating surface under 254 nm UV light, confirms the intrinsic self-healing ability of the coatings made by PPM copolymer, contrary to the reference specimen (i.e., blend PPM).

3.
Molecules ; 24(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30583586

ABSTRACT

Over the past decade, green chemistry has been emphasizing the importance of protecting the environment and human health in an economically beneficial manner aiming at avoiding toxins and reducing wastes. The field of metallic materials degradation, generally faced by using toxic compounds, found a fertile research field in green chemistry. In fact, the use of inhibitors is a well-known strategy when metal corrosion needs to be prevented, controlled, or retarded. Green inhibitors are biodegradable, ecologically acceptable and renewable. Their valorization expands possible applications in industrial fields other than 'waste to energy' in the perspective of circular economy. Although lot of experimental work has been done and many research papers have been published, the topic of green inhibitors is still an open issue. The great interest in the field expanded the research, resulting in high numbers of tested molecules. However, the most frequently adopted approaches are conventional and, hence, not suitable to fully characterize the potential efficacy of inhibitors. All the mentioned aspects are the object of the present review and are meant as a constructive criticism to highlight the weak points of the green inhibitors field as to re-evaluate the literature and address the future research in the field that still lacks rationalization.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Biomass , Corrosion , Waste Products , Economics , Green Chemistry Technology , Waste Products/analysis
4.
Waste Manag ; 71: 785-791, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28666632

ABSTRACT

In anaerobic digesters (AD), volatile fatty acids (VFAs) concentration is a critical operative parameter, which is usually manually monitored to prevent inhibition of microbial consortia. An on-line VFAs monitoring system as early-warning for increasing concentrations would be of great help for operators. Here, air-cathode membraneless microbial fuel cells (MFCs) were investigated as potential biosensors, whose electrical signal instantaneously moves from its steady value with the accumulation of VFAs in the anodic solution. MFCs were operated equipping four lab-scale ADs with carbon-based electrodes. Reactors were filled with the digestate from a full-scale AD and fed in batch with four kinds of feedstock (cheese whey, kitchen waste, citrus pulp and fishery waste). The MFC signal initially increased in parallel to VFAs production, then tended to a steady value for VFAs concentrations above 1000mgAcL-1. Peak concentrations of tVFAs (2500-4500mgAcL-1) and MFCs potentials were negatively correlated (r=0.916, p<0.05), regardless of the type of substrate. Inhibition of the MFC system occurred when VFAs increased fast above 4000mgAcL-1. Polarization curves of electrodes stressed that electroactive bacteria on bioanodes were strongly subjected to inhibition. The inhibition of electroactivity on bioanode trended like typical shock-sensors, opening to direct application as early-warning monitoring system in full-scale ADs.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Fatty Acids, Volatile/metabolism , Anaerobiosis , Carbon , Electricity
5.
J Phys Chem A ; 119(27): 7038-51, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26066388

ABSTRACT

Pyrrolyl-silicon compounds were investigated by different theoretical approaches. Model monomers consisted of a pyrrole ring N-substituted with silylmethoxy and silylhydroxy end groups through a propyl chain spacer, designated as PySi and PySiOH. Geometrical, vibrational, and electronic properties, as well as chemical reactivity, are discussed and compared with pyrrole (Py) and N-propylpyrrole (N-PrPy) that were studied in parallel for reference purposes and methods validation. The electronic distribution between PySi and PySiOH differs importantly, the former being an electron donor, as Py and N-PrPy. Conversely, PySiOH presents donor-acceptor character with the LUMO energy level localized on the silanol end group. Global and local reactivity descriptors predict PySiOH more reactive than PySi with two preferential reactive sites: electron-rich Py ring and electron-deficient silanol group. On the basis of experimental studies, oligomers of PySiOH linked α-α' via Py rings (α-α'PynSiOH, n = 2, 3) were considered as model molecules of hydrolyzed PySi. The most stable structures were derived from randomly generated α-α'PynSiOH that were optimized at semiempirical AM1 and refined with M05-2X/6-31G(d,p). Conformational analysis of dimer and trimer structures points to stability enhanced by molecular packing. Nonetheless, NBO and RDG results indicate that oligomer stability is dictated by the cooperative contribution of hydrogen bonding between silanol end groups and dispersive vdW interactions between silanol and the π system of the Py ring. The latter interaction resulting from electron delocalization induced by an electron-deficient silanol group seems to determine the smaller gap energy of T-shaped OH-π arrangements. The theoretical findings support the peculiar chemical behavior revealed by experiment.

6.
Bioelectrochemistry ; 106(Pt A): 240-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26045153

ABSTRACT

Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.


Subject(s)
Bioelectric Energy Sources , Oxygen/chemistry , Polytetrafluoroethylene/chemistry , Catalysis , Electric Capacitance , Electric Conductivity , Electrochemistry , Oxidation-Reduction , Surface Properties
7.
Bioresour Technol ; 163: 54-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24787317

ABSTRACT

Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Electrodes , Photoelectron Spectroscopy , Porosity , Pressure , Principal Component Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...