Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Cent Sci ; 10(2): 291-301, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435525

ABSTRACT

The base excision repair glycosylase MUTYH prevents mutations associated with the oxidatively damaged base, 8-oxo-7,8-dihydroguanine (OG), by removing undamaged misincorporated adenines from OG:A mispairs. Defects in OG:A repair in individuals with inherited MUTYH variants are correlated with the colorectal cancer predisposition syndrome known as MUTYH-associated polyposis (MAP). Herein, we reveal key structural features of OG required for efficient repair by human MUTYH using structure-activity relationships (SAR). We developed a GFP-based plasmid reporter assay to define SAR with synthetically generated OG analogs in human cell lines. Cellular repair results were compared with kinetic parameters measured by adenine glycosylase assays in vitro. Our results show substrates lacking the 2-amino group of OG, such as 8OI:A (8OI = 8-oxoinosine), are not repaired in cells, despite being excellent substrates in in vitro adenine glycosylase assays, new evidence that the search and detection steps are critical factors in cellular MUTYH repair functionality. Surprisingly, modification of the O8/N7H of OG, which is the distinguishing feature of OG relative to G, was tolerated in both MUTYH-mediated cellular repair and in vitro adenine glycosylase activity. The lack of sensitivity to alterations at the O8/N7H in the SAR of MUTYH substrates is distinct from previous work with bacterial MutY, indicating that the human enzyme is much less stringent in its lesion verification. Our results imply that the human protein relies almost exclusively on detection of the unique major groove position of the 2-amino group of OG within OGsyn:Aanti mispairs to select contextually incorrect adenines for excision and thereby thwart mutagenesis. These results predict that MUTYH variants that exhibit deficiencies in OG:A detection will be severely compromised in a cellular setting. Moreover, the reliance of MUTYH on the interaction with the OG 2-amino group suggests that disrupting this interaction with small molecules may provide a strategy to develop potent and selective MUTYH inhibitors.

2.
Article in English | MEDLINE | ID: mdl-38043730

ABSTRACT

The Apolipophorin-III (apoLp-III) is reported as an essential protein element in lipids transport and incorporation in lepidopterans. Structurally, apoLp-III has an α-helix bundle structure composed of five α-helices. Interestingly, classic studies proposed a structural switch triggered by its interaction with lipids, where the α-helix bundle opens. Currently, the study of the apoLp-III has been limited to insects, with no homologs identified in other arthropods. By implementing a structure-based search with the Phyre2 algorithm surveying the shrimp Litopenaeus vannamei's transcriptome, we identified a putative apoLp-III in this farmed penaeid (LvApoLp-III). Unlike canonical apoLp-III, the LvApoLp-III was identified as an internal domain within the transmembrane protein Prominin-1. Structural modeling using the template-based Phyre2 and template-free AlphaFold algorithms rendered two distinct structural topologies: the α-helix bundle and a coiled-coil structure. Notably, the secondary structure composition on both models was alike, with differences in the orientation and distribution of the α-helices and hydrophobic moieties. Both models provide insights into the classical structural switch induced by lipids in apoLp-III. To corroborate structure/function inferences, we cloned the synthetic LvApoLp-III domain, overexpressed, and purified the recombinant protein. Circular dichroism measurements with the recombinant LvApoLp-III agreed with the structural models. In vitro liposome interaction demonstrated that the apoLp-III domain within the PROM1 of L.vannamei associated similarly to exchangeable apolipoproteins. Altogether, this work reports the presence of an apolipophorin-III domain in crustaceans for the first time and opens questions regarding its function and importance in lipid metabolism or the immune system.


Subject(s)
Apolipoproteins , Liposomes , Animals , AC133 Antigen , Apolipoproteins/chemistry , Apolipoproteins/genetics , Apolipoproteins/metabolism , Protein Structure, Secondary , Liposomes/chemistry
3.
Nucleic Acids Res ; 51(3): 1034-1049, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36631987

ABSTRACT

DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated ß-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.


Subject(s)
DNA Glycosylases , Neoplasms , Humans , Calcium , DNA Repair , Mutation , Purines , DNA Glycosylases/metabolism
5.
Genes (Basel) ; 11(11)2020 11 19.
Article in English | MEDLINE | ID: mdl-33228188

ABSTRACT

The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.


Subject(s)
DNA Repair/physiology , DNA-Directed DNA Polymerase/genetics , Organelles/enzymology , Plant Proteins/genetics , Amino Acids/genetics , Amino Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA End-Joining Repair/physiology , DNA-Directed DNA Polymerase/metabolism , Evolution, Molecular , Plant Proteins/metabolism
6.
Biochim Biophys Acta Proteins Proteom ; 1868(11): 140512, 2020 11.
Article in English | MEDLINE | ID: mdl-32731033

ABSTRACT

The genome of Entamoeba histolytica encodes approximately 50 Cysteine Proteases (CPs) whose activity is regulated by two Inhibitors of Cysteine Proteases (ICPs), EhICP1 and EhICP2. The main difference between both EhICPs is the acquisition of a 17 N-terminal targeting signal in EhICP2 and three exposed cysteine residues in EhICP1. The three exposed cysteines in EhICP1 potentiate the formation of cross-linking species that drive heterogeneity. Here we solved the NMR structure of EhICP1 using a mutant protein without accessible cysteines. Our structural data shows that EhICP1 adopts an immunoglobulin fold composed of seven ß-strands, and three solvent exposed loops that resemble the structures of EhICP2 and chagasin. EhICP1 and EhICP2 are able to inhibit the archetypical cysteine protease papain by intercalating their BC loops into the protease active site independently of the character of the residue (serine or threonine) responsible to interact with the active site of papain. EhICP1 and EhICP2 present signals of functional divergence as they clustered in different clades. Two of the three exposed cysteines in EhICP1 are located at the DE loop that intercalates into the CP substrate-binding cleft. We propose that the solvent exposed cysteines of EhICP1 play a role in regulating its inhibitory activity and that in oxidative conditions, the cysteines of EhICP1 react to form intra and intermolecular disulfide bonds that render an inactive inhibitor. EhICP2 is not subject to redox regulation, as this inhibitor does not contain a single cysteine residue. This proposed redox regulation may be related to the differential cellular localization between EhICP1 and EhICP2.


Subject(s)
Entamoeba histolytica , Protozoan Proteins/chemistry , Cloning, Molecular , Cysteine Proteinase Inhibitors , Entamoeba histolytica/genetics , Escherichia coli/genetics , Mutagenesis, Site-Directed , Papain/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Solutions
7.
Biochim Biophys Acta Gen Subj ; 1864(7): 129608, 2020 07.
Article in English | MEDLINE | ID: mdl-32234506

ABSTRACT

BACKGROUND: Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS: Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS: The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION: Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.


Subject(s)
DNA Polymerase gamma/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Diseases/metabolism , DNA Polymerase gamma/chemistry , DNA Polymerase gamma/metabolism , DNA Replication/genetics , DNA, Mitochondrial/chemistry , Humans , Models, Molecular , Mutation
8.
Mitochondrion ; 49: 166-177, 2019 11.
Article in English | MEDLINE | ID: mdl-31445096

ABSTRACT

Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence.


Subject(s)
DNA Polymerase I/metabolism , DNA, Fungal/biosynthesis , DNA, Mitochondrial/biosynthesis , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Catalytic Domain , DNA Polymerase I/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , DNA, Fungal/genetics , DNA, Mitochondrial/genetics , Humans , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
9.
DNA Repair (Amst) ; 76: 76-88, 2019 04.
Article in English | MEDLINE | ID: mdl-30822689

ABSTRACT

During its life cycle, the protist parasite Entamoeba histolytica encounters reactive oxygen and nitrogen species that alter its genome. Base excision repair (BER) is one of the most important pathways for the repair of DNA base lesions. Analysis of the E. histolytica genome revealed the presence of most of the BER components. Surprisingly, this included a gene encoding an apurinic/apyrimidinic (AP) endonuclease that previous studies had assumed was absent. Indeed, our analysis showed that the genome of E. histolytica harbors the necessary genes needed for both short and long-patch BER sub-pathways. These genes include DNA polymerases with predicted 5'-dRP lyase and strand-displacement activities and a sole DNA ligase. A distinct feature of the E. histolytica genome is the lack of several key damage-specific BER glycosylases, such as OGG1/MutM, MDB4, Mag1, MPG, SMUG, and TDG. Our evolutionary analysis indicates that several E. histolytica DNA glycosylases were acquired by lateral gene transfer (LGT). The genes that encode for MutY, AlkD, and UDG (Family VI) are included among these cases. Endonuclease III and UNG (family I) are the only DNA glycosylases with a eukaryotic origin in E. histolytica. A gene encoding a MutT 8-oxodGTPase was also identified that was acquired by LGT. The mixed composition of BER genes as a DNA metabolic pathway shaped by LGT in E. histolytica indicates that LGT plays a major role in the evolution of this eukaryote. Sequence and structural prediction of E. histolytica DNA glycosylases, as well as MutT, suggest that the E. histolytica DNA repair proteins evolved to harbor structural modifications that may confer unique biochemical features needed for the biology of this parasite.


Subject(s)
DNA Repair/genetics , Entamoeba histolytica/genetics , Evolution, Molecular , Gene Duplication , Gene Transfer, Horizontal , Genes, Protozoan/genetics , Amino Acid Sequence , DNA Glycosylases/chemistry , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Entamoeba histolytica/enzymology , Humans , Models, Molecular , Protein Conformation
10.
Nucleic Acids Res ; 47(6): 3028-3044, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30698803

ABSTRACT

Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.


Subject(s)
Arabidopsis/genetics , DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/genetics , Homologous Recombination/genetics , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Nucleotides/genetics , Organelles/genetics
11.
Article in English | MEDLINE | ID: mdl-30050869

ABSTRACT

The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H2O2 treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H2O2 treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.


Subject(s)
DNA Damage , DNA Ligases/metabolism , DNA Repair , Entamoeba histolytica/enzymology
12.
DNA Repair (Amst) ; 65: 1-10, 2018 05.
Article in English | MEDLINE | ID: mdl-29522990

ABSTRACT

Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Catalytic Domain , DNA Repair , DNA-Directed DNA Polymerase/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , DNA Damage , DNA, Chloroplast/metabolism , DNA, Mitochondrial/metabolism , DNA, Plant/metabolism , DNA-Directed DNA Polymerase/chemistry , Phosphorus-Oxygen Lyases/metabolism , Sequence Alignment
13.
FEBS Open Bio ; 7(5): 659-674, 2017 05.
Article in English | MEDLINE | ID: mdl-28469979

ABSTRACT

Proliferating cell nuclear antigen (PCNA) coordinates multienzymatic reactions by interacting with a variety of protein partners. Family I DNA ligases are multidomain proteins involved in sealing of DNA nicks during Okazaki fragment maturation and DNA repair. The interaction of DNA ligases with the interdomain connector loop (IDCL) of PCNA through its PCNA-interacting peptide (PIP box) is well studied but the role of the interacting surface between both proteins is not well characterized. In this work, we used a minimal DNA ligase I and two N-terminal deletions to establish that DNA binding and nick-sealing stimulation of DNA ligase I by PCNA are not solely dependent on the PIP box-IDCL interaction. We found that a truncated DNA ligase I with a deleted PIP box is stimulated by PCNA. Furthermore, the activity of a DNA ligase defective in DNA binding is rescued upon PCNA addition. As the rate constants for single-turnover ligation for the full-length and truncated DNA ligases are not affected by PCNA, our data suggest that PCNA stimulation is achieved by increasing the affinity for nicked DNA substrate and not by increasing catalytic efficiency. Surprisingly C-terminal mutants of PCNA are not able to stimulate nick-sealing activity of Entamoeba histolytica DNA ligase I. Our data support the notion that the C-terminal region of PCNA may be involved in promoting an allosteric transition in E. histolytica DNA ligase I from a spread-shaped to a ring-shaped structure. This study suggests that the ring-shaped PCNA is a binding platform able to stabilize coevolved protein-protein interactions, in this case an interaction with DNA ligase I.

14.
Curr Protein Pept Sci ; 18(10): 1035-1042, 2017.
Article in English | MEDLINE | ID: mdl-27526930

ABSTRACT

The number of protein folds in nature is limited, thus is not surprising that proteins with the same fold are able to exert different functions. The cysteine protease inhibitors that adopt an immunoglobulin- like fold (Ig-ICPs) are inhibitors encoded in bacteria and protozoan parasites. Structural studies indicate that these inhibitors resemble the structure of archetypical proteins with an Ig fold, like antibodies, cadherins or cell receptors. The structure of Ig-ICPs from four different protozoan parasites clearly shows the presence of three loops that form part of a protein-ligand interaction surface that resembles the antigen binding sites of antibodies. Thus, Ig-ICPs bind to different cysteine proteases using a tripartite mechanism in which their BC, DE and FG loops are responsible for the main interactions with the target cysteine protease. Ig-ICPs from different protozoan parasites regulate the enzymatic activity of host or parasite's proteases and thus regulate virulence and pathogenesis.


Subject(s)
Cysteine Proteinase Inhibitors/chemistry , Entamoeba histolytica/genetics , Immunoglobulins/chemistry , Leishmania mexicana/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Trypanosoma cruzi/genetics , Binding Sites , Cysteine Proteinase Inhibitors/metabolism , Entamoeba histolytica/metabolism , Entamoeba histolytica/pathogenicity , Gene Expression , Immunoglobulins/genetics , Immunoglobulins/metabolism , Leishmania mexicana/metabolism , Leishmania mexicana/pathogenicity , Ligands , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/pathogenicity , Virulence
15.
Front Plant Sci ; 7: 1817, 2016.
Article in English | MEDLINE | ID: mdl-27999583

ABSTRACT

In plants triosephosphate isomerase (TPI) interconverts glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs) and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI) and chloroplast TPI (pdTPI) share more than 60% amino acid identity and assemble as (ß-α)8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively) and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218). Site directed mutagenesis of residues pdTPI-C15, cTPI-C13, and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS) and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218). Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to the redox environment in the chloroplast.

16.
FEBS J ; 283(3): 521-40, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26613369

ABSTRACT

7,8-Dihydro-8-deoxyguanine (8oG) is one of the most common oxidative lesions in DNA. DNA polymerases misincorporate an adenine across from this lesion. Thus, 8oG is a highly mutagenic lesion responsible for G:C→T:A transversions. MutY is an adenine glycosylase, part of the base excision repair pathway that removes adenines, when mispaired with 8oG or guanine. Its catalytic domain includes a [4Fe-4S] cluster motif coordinated by cysteinyl ligands. When this cluster is absent, MutY activity is depleted and several studies concluded that the [4Fe-4S] cluster motif is an indispensable component for DNA binding, substrate recognition and enzymatic activity. In the present study, we identified 46 MutY homologues that lack the canonical cysteinyl ligands, suggesting an absence of the [4Fe-4S] cluster. A phylogenetic analysis groups these novel MutYs into two different clades. One clade is exclusive of the order Lactobacillales and another clade has a mixed composition of anaerobic and microaerophilic bacteria and species from the protozoan genus Entamoeba. Structural modeling and sequence analysis suggests that the loss of the [4Fe-4S] cluster is compensated by a convergent solution in which bulky amino acids substitute the [4Fe-4S] cluster. We functionally characterized MutYs from Lactobacillus brevis and Entamoeba histolytica as representative members from each clade and found that both enzymes are active adenine glycosylases. Furthermore, chimeric glycosylases, in which the [4Fe-4S] cluster of Escherichia coli MutY is replaced by the corresponding amino acids of LbY and EhY, are also active. Our data indicates that the [4Fe-4S] cluster plays a structural role in MutYs and evidences the existence of alternative functional solutions in nature.


Subject(s)
DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Amino Acid Sequence , DNA Glycosylases/genetics , Entamoeba histolytica/enzymology , Escherichia coli/enzymology , Iron-Sulfur Proteins/genetics , Levilactobacillus brevis/enzymology , Models, Molecular , Molecular Sequence Data , Phylogeny , Sequence Alignment
17.
PLoS One ; 10(11): e0141747, 2015.
Article in English | MEDLINE | ID: mdl-26618356

ABSTRACT

The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.


Subject(s)
Protein Multimerization , Protozoan Proteins/chemistry , Trichomonas vaginalis/enzymology , Triose-Phosphate Isomerase/chemistry , Amino Acid Sequence , Catalytic Domain , Enzyme Stability , Molecular Sequence Data , Protein Binding , Protozoan Proteins/metabolism , Triose-Phosphate Isomerase/metabolism
18.
Mitochondrion ; 24: 22-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26184436

ABSTRACT

Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer.


Subject(s)
DNA Polymerase I/metabolism , DNA Replication , DNA, Mitochondrial/biosynthesis , DNA-Directed RNA Polymerases/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Mitochondria/genetics , Promoter Regions, Genetic , Replication Origin
19.
Article in English | MEDLINE | ID: mdl-23142216

ABSTRACT

Catalase (EC 1.11.1.6) is an antioxidant enzyme involved in redox equilibrium, regulating hydrogen peroxide (H(2)O(2)) concentration, a harmful reactive oxygen species (ROS) that is produced during hypoxia. Hypoxia occurs commonly in aquatic environments and in shrimp farms. We studied the catalase gene of the shrimp Litopenaeus vannamei and tested its expression and enzyme activity during hypoxia (1.5mg/L O(2); 6 and 24h) and reoxygenation (1h after hypoxia). The complete gene is 2974bp long and has four introns of 821, 223, 114 and 298bp, respectively. The first intron has tree microsatellites, with GT and (T)AT(GT) repeated sequences. L. vannamei catalase is part of an invertebrate clade including crustaceans and rotifers. Catalase expression and activity is different in gills and hepatopancreas. Expression in gills increased 3.2 and 3-fold in response to hypoxia and reoxygenation (6 and 24h hypoxia, followed by 1h reoxygenation) compared to normoxia, while no differences were detected in the expression and activity in hepatopancreas. Catalase activity in gills had a contrary response to expression in hypoxia and reoxygenation.


Subject(s)
Catalase/genetics , Catalase/metabolism , Gene Expression Regulation, Enzymologic , Oxygen/metabolism , Penaeidae/enzymology , Penaeidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Catalase/chemistry , Gills/enzymology , Humans , Introns/genetics , Molecular Sequence Data , Organ Specificity , Penaeidae/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...