Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Appl Clin Med Phys ; 25(4): e14334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522034
2.
Phys Med ; 113: 102653, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586146

ABSTRACT

BACKGROUND: There have been several proposals by researchers for the introduction of Artificial Intelligence (AI) technology due to its promising role in radiotherapy practice. However, prior to the introduction of the technology, there are certain general recommendations that must be achieved. Also, the current challenges of AI must be addressed. In this review, we assess how Africa is prepared for the integration of AI technology into radiotherapy service delivery. METHODS: To assess the readiness of Africa for integration of AI in radiotherapy services delivery, a narrative review of the available literature from PubMed, Science Direct, Google Scholar, and Scopus was conducted in the English language using search terms such as Artificial Intelligence, Radiotherapy in Africa, Machine Learning, Deep Learning, and Quality Assurance. RESULTS: We identified a number of issues that could limit the successful integration of AI technology into radiotherapy practice. The major issues include insufficient data for training and validation of AI models, lack of educational curriculum for AI radiotherapy-related courses, no/limited AI teaching professionals, funding, and lack of AI technology and resources. Solutions identified to facilitate smooth implementation of the technology into radiotherapy practices within the region include: creating an accessible national data bank, integrating AI radiotherapy training programs into Africa's educational curriculum, investing in AI technology and resources such as electronic health records and cloud storage, and creation of legal laws and policies to support the use of the technology. These identified solutions need to be implemented on the background of creating awareness among health workers within the radiotherapy space. CONCLUSION: The challenges identified in this review are common among all the geographical regions in the African continent. Therefore, all institutions offering radiotherapy education and training programs, management of the medical centers for radiotherapy and oncology, national and regional professional bodies for medical physics, ministries of health, governments, and relevant stakeholders must take keen interest and work together to achieve this goal.


Subject(s)
Artificial Intelligence , Radiation Oncology , Humans , Machine Learning , Curriculum , Africa
3.
J Appl Clin Med Phys ; 24(3): e13839, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36412092

ABSTRACT

PURPOSE: To develop and evaluate an automated whole-brain radiotherapy (WBRT) treatment planning pipeline with a deep learning-based auto-contouring and customizable landmark-based field aperture design. METHODS: The pipeline consisted of the following steps: (1) Auto-contour normal structures on computed tomography scans and digitally reconstructed radiographs using deep learning techniques, (2) locate the landmark structures using the beam's-eye-view, (3) generate field apertures based on eight different landmark rules addressing different clinical purposes and physician preferences. Two parallel approaches for generating field apertures were developed for quality control. The performance of the generated field shapes and dose distributions were compared with the original clinical plans. The clinical acceptability of the plans was assessed by five radiation oncologists from four hospitals. RESULTS: The performance of the generated field apertures was evaluated by the Hausdorff distance (HD) and mean surface distance (MSD) from 182 patients' field apertures used in the clinic. The average HD and MSD for the generated field apertures were 16 ± 7 and 7 ± 3 mm for the first approach, respectively, and 17 ± 7 and 7 ± 3 mm, respectively, for the second approach. The differences regarding HD and MSD between the first and the second approaches were 1 ± 2 and 1 ± 3 mm, respectively. A clinical review of the field aperture design, conducted using 30 patients, achieved a 100% acceptance rate for both the first and second approaches, and the plan review achieved a 100% acceptance rate for the first approach and a 93% acceptance rate for the second approach. The average acceptance rate for meeting lens dosimetric recommendations was 80% (left lens) and 77% (right lens) for the first approach, and 70% (both left and right lenses) for the second approach, compared with 50% (left lens) and 53% (right lens) for the clinical plans. CONCLUSION: This study provided an automated pipeline with two field aperture generation approaches to automatically generate WBRT treatment plans. Both quantitative and qualitative evaluations demonstrated that our novel pipeline was comparable with the original clinical plans.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiometry , Tomography, X-Ray Computed , Brain , Radiotherapy, Intensity-Modulated/methods
4.
Med Phys ; 49(9): 5742-5751, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866442

ABSTRACT

PURPOSE: To fully automate CT-based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques. METHODS: We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4-field-box (4-field-box), 3D conformal radiotherapy (3D-CRT), and volumetric modulated arc therapy (VMAT). These auto-planning algorithms were combined with a previously developed auto-contouring system. To improve the quality of the 4-field-box and 3D-CRT plans, we used an in-house, field-in-field (FIF) automation program. Thirty-five plans were generated for each technique on CT scans from multiple institutions and evaluated by five experienced radiation oncologists from three different countries. Every plan was reviewed by two of the five radiation oncologists and scored using a 5-point Likert scale. RESULTS: Overall, 87%, 99%, and 94% of the automatically generated plans were found to be clinically acceptable without modification for the 4-field-box, 3D-CRT, and VMAT plans, respectively. Some customizations of the FIF configuration were necessary on the basis of radiation oncologist preference. Additionally, in some cases, it was necessary to renormalize the plan after it was generated to satisfy radiation oncologist preference. CONCLUSION: Approximately, 90% of the automatically generated plans were clinically acceptable for all three planning techniques. This fully automated planning system has been implemented into the radiation planning assistant for further testing in resource-constrained radiotherapy departments in low- and middle-income countries.


Subject(s)
Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
5.
J Appl Clin Med Phys ; 23(8): e13647, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35580067

ABSTRACT

PURPOSE: To determine the most accurate similarity metric when using an independent system to verify automatically generated contours. METHODS: A reference autocontouring system (primary system to create clinical contours) and a verification autocontouring system (secondary system to test the primary contours) were used to generate a pair of 6 female pelvic structures (UteroCervix [uterus + cervix], CTVn [nodal clinical target volume (CTV)], PAN [para-aortic lymph nodes], bladder, rectum, and kidneys) on 49 CT scans from our institution and 38 from other institutions. Additionally, clinically acceptable and unacceptable contours were manually generated using the 49 internal CT scans. Eleven similarity metrics (volumetric Dice similarity coefficient (DSC), Hausdorff distance, 95% Hausdorff distance, mean surface distance, and surface DSC with tolerances from 1 to 10 mm) were calculated between the reference and the verification autocontours, and between the manually generated and the verification autocontours. A support vector machine (SVM) was used to determine the threshold that separates clinically acceptable and unacceptable contours for each structure. The 11 metrics were investigated individually and in certain combinations. Linear, radial basis function, sigmoid, and polynomial kernels were tested using the combinations of metrics as inputs for the SVM. RESULTS: The highest contouring error detection accuracies were 0.91 for the UteroCervix, 0.90 for the CTVn, 0.89 for the PAN, 0.92 for the bladder, 0.95 for the rectum, and 0.97 for the kidneys and were achieved using surface DSCs with a thickness of 1, 2, or 3 mm. The linear kernel was the most accurate and consistent when a combination of metrics was used as an input for the SVM. However, the best model accuracy from the combinations of metrics was not better than the best model accuracy from a surface DSC as an input. CONCLUSIONS: We distinguished clinically acceptable contours from clinically unacceptable contours with an accuracy higher than 0.9 for the targets and critical structures in patients with cervical cancer; the most accurate similarity metric was surface DSC with a thickness of 1, 2, or 3 mm.


Subject(s)
Deep Learning , Algorithms , Female , Humans , Lymph Nodes , Pelvis , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
6.
Med Phys ; 47(11): 5648-5658, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32964477

ABSTRACT

PURPOSE: To develop a tool for the automatic contouring of clinical treatment volumes (CTVs) and normal tissues for radiotherapy treatment planning in cervical cancer patients. METHODS: An auto-contouring tool based on convolutional neural networks (CNN) was developed to delineate three cervical CTVs and 11 normal structures (seven OARs, four bony structures) in cervical cancer treatment for use with the Radiation Planning Assistant, a web-based automatic plan generation system. A total of 2254 retrospective clinical computed tomography (CT) scans from a single cancer center and 210 CT scans from a segmentation challenge were used to train and validate the CNN-based auto-contouring tool. The accuracy of the tool was evaluated by calculating the Sørensen-dice similarity coefficient (DSC) and mean surface and Hausdorff distances between the automatically generated contours and physician-drawn contours on 140 internal CT scans. A radiation oncologist scored the automatically generated contours on 30 external CT scans from three South African hospitals. RESULTS: The average DSC, mean surface distance, and Hausdorff distance of our CNN-based tool were 0.86/0.19 cm/2.02 cm for the primary CTV, 0.81/0.21 cm/2.09 cm for the nodal CTV, 0.76/0.27 cm/2.00 cm for the PAN CTV, 0.89/0.11 cm/1.07 cm for the bladder, 0.81/0.18 cm/1.66 cm for the rectum, 0.90/0.06 cm/0.65 cm for the spinal cord, 0.94/0.06 cm/0.60 cm for the left femur, 0.93/0.07 cm/0.66 cm for the right femur, 0.94/0.08 cm/0.76 cm for the left kidney, 0.95/0.07 cm/0.84 cm for the right kidney, 0.93/0.05 cm/1.06 cm for the pelvic bone, 0.91/0.07 cm/1.25 cm for the sacrum, 0.91/0.07 cm/0.53 cm for the L4 vertebral body, and 0.90/0.08 cm/0.68 cm for the L5 vertebral bodies. On average, 80% of the CTVs, 97% of the organ at risk, and 98% of the bony structure contours in the external test dataset were clinically acceptable based on physician review. CONCLUSIONS: Our CNN-based auto-contouring tool performed well on both internal and external datasets and had a high rate of clinical acceptability.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Neural Networks, Computer , Organs at Risk , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
7.
J Vis Exp ; (134)2018 04 11.
Article in English | MEDLINE | ID: mdl-29708544

ABSTRACT

The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.


Subject(s)
Radiotherapy Dosage/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...