Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 108(1): 91-101, 2021 01.
Article in English | MEDLINE | ID: mdl-33349932

ABSTRACT

PREMISE: The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS: We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS: We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS: Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.


Subject(s)
Droughts , Starch , Dehydration , Humans , Phylogeny , Water , Xylem
2.
Glob Chang Biol ; 20(3): 893-907, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375846

ABSTRACT

We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery. Three of the seven sampled resprouting species had the greatest or near greatest levels of mortality ever recorded when compared to previous studies. Most shrub mortality occurred during the drought after individuals had resprouted (i.e. individuals survived fire, resprouted and then subsequently died). Physiological measurements of species with high mortality suggested that resprout stems were highly embolized and xylem hydraulic conductivities were close to zero during the peak of the drought. In addition, lignotubers of two of the three species experiencing high mortality were depleted of starch. Population densities of most shrub species declined after the drought compared with their prefire levels, with the exception of one drought tolerant obligate seeding species. Resprouting shrub species may deplete their carbohydrate reserves during the resprouting process, making them particularly vulnerable to drought because of the need to transpire water to acquire the CO2 that is used to supply energy to a large respiring root system. Drought appears to interact with fire by altering postfire shrub recovery and altering species abundances and composition of chaparral communities.


Subject(s)
Droughts , Fires , Plant Physiological Phenomena , California , Carbohydrate Metabolism , Plant Stomata/metabolism , Plant Tubers/metabolism , Water/metabolism , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...