Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Appl Clin Med Phys ; 23(9): e13731, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35920116

ABSTRACT

Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long-standing interest in multimodality co-registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT-CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT-CT DIR is applied to the MRI to register it with the CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI- and LPD-based methods, and the multimodality DIR provided by a state of the art, commercially available FDA-cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD- and MI-based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI- and LPD-based methods.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed/methods
2.
IEEE Access ; 9: 17208-17221, 2021.
Article in English | MEDLINE | ID: mdl-33747682

ABSTRACT

Multi-modality imaging constitutes a foundation of precision medicine, especially in oncology where reliable and rapid imaging techniques are needed in order to insure adequate diagnosis and treatment. In cervical cancer, precision oncology requires the acquisition of 18F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET), magnetic resonance (MR), and computed tomography (CT) images. Thereafter, images are co-registered to derive electron density attributes required for FDG-PET attenuation correction and radiation therapy planning. Nevertheless, this traditional approach is subject to MR-CT registration defects, expands treatment expenses, and increases the patient's radiation exposure. To overcome these disadvantages, we propose a new framework for cross-modality image synthesis which we apply on MR-CT image translation for cervical cancer diagnosis and treatment. The framework is based on a conditional generative adversarial network (cGAN) and illustrates a novel tactic that addresses, simplistically but efficiently, the paradigm of vanishing gradient vs. feature extraction in deep learning. Its contributions are summarized as follows: 1) The approach -termed sU-cGAN-uses, for the first time, a shallow U-Net (sU-Net) with an encoder/decoder depth of 2 as generator; 2) sU-cGAN's input is the same MR sequence that is used for radiological diagnosis, i.e. T2-weighted, Turbo Spin Echo Single Shot (TSE-SSH) MR images; 3) Despite limited training data and a single input channel approach, sU-cGAN outperforms other state of the art deep learning methods and enables accurate synthetic CT (sCT) generation. In conclusion, the suggested framework should be studied further in the clinical settings. Moreover, the sU-Net model is worth exploring in other computer vision tasks.

3.
Article in English | MEDLINE | ID: mdl-32175868

ABSTRACT

Computed tomography (CT) provides information for diagnosis, PET attenuation correction (AC), and radiation treatment planning (RTP). Disadvantages of CT include poor soft tissue contrast and exposure to ionizing radiation. While MRI can overcome these disadvantages, it lacks the photon absorption information needed for PET AC and RTP. Thus, an intelligent transformation from MR to CT, i.e., the MR-based synthetic CT generation, is of great interest as it would support PET/MR AC and MR-only RTP. Using an MR pulse sequence that combines ultra-short echo time (UTE) and modified Dixon (mDixon), we propose a novel method for synthetic CT generation jointly leveraging prior knowledge as well as partial supervision (SCT-PK-PS for short) on large-field-of-view images that span abdomen and pelvis. Two key machine learning techniques, i.e., the knowledge-leveraged transfer fuzzy c-means (KL-TFCM) and the Laplacian support vector machine (LapSVM), are used in SCT-PK-PS. The significance of our effort is threefold: 1) Using the prior knowledge-referenced KL-TFCM clustering, SCT-PK-PS is able to group the feature data of MR images into five initial clusters of fat, soft tissue, air, bone, and bone marrow. Via these initial partitions, clusters needing to be refined are observed and for each of them a few additionally labeled examples are given as the partial supervision for the subsequent semi-supervised classification using LapSVM; 2) Partial supervision is usually insufficient for conventional algorithms to learn the insightful classifier. Instead, exploiting not only the given supervision but also the manifold structure embedded primarily in numerous unlabeled data, LapSVM is capable of training multiple desired tissue-recognizers; 3) Benefiting from the joint use of KL-TFCM and LapSVM, and assisted by the edge detector filter based feature extraction, the proposed SCT-PK-PS method features good recognition accuracy of tissue types, which ultimately facilitates the good transformation from MR images to CT images of the abdomen-pelvis. Applying the method on twenty subjects' feature data of UTE-mDixon MR images, the average score of the mean absolute prediction deviation (MAPD) of all subjects is 140.72 ± 30.60 HU which is statistically significantly better than the 241.36 ± 21.79 HU obtained using the all-water method, the 262.77 ± 42.22 HU obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-air, fat, and soft tissue) method, and the 197.05 ± 76.53 HU obtained via the conventional SVM method. These results demonstrate the effectiveness of our method for the intelligent transformation from MR to CT on the body section of abdomen-pelvis.


Subject(s)
Image Processing, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Pelvis/diagnostic imaging , Tomography, X-Ray Computed/methods , Abdomen/diagnostic imaging , Humans
4.
Med Phys ; 46(8): 3520-3531, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31063248

ABSTRACT

PURPOSE: Accurate photon attenuation assessment from MR data remains an unmet challenge in the thorax due to tissue heterogeneity and the difficulty of MR lung imaging. As thoracic tissues encompass the whole physiologic range of photon absorption, large errors can occur when using, for example, a uniform, water-equivalent or a soft-tissue-only approximation. The purpose of this study was to introduce a method for voxel-wise thoracic synthetic CT (sCT) generation from MR data attenuation correction (AC) for PET/MR or for MR-only radiation treatment planning (RTP). METHODS: Acquisition: A radial stack-of-stars combining ultra-short-echo time (UTE) and modified Dixon (mDixon) sequence was optimized for thoracic imaging. The UTE-mDixon pulse sequence collects MR signals at three TE times denoted as UTE, Echo1, and Echo2. Three-point mDixon processing was used to reconstruct water and fat images. Bias field correction was applied in order to avoid artifacts caused by inhomogeneity of the MR magnetic field. ANALYSIS: Water fraction and R2* maps were estimated using the UTE-mDixon data to produce a total of seven MR features, that is UTE, Echo1, Echo2, Dixon water, Dixon fat, Water fraction, and R2*. A feature selection process was performed to determine the optimal feature combination for the proposed automatic, 6-tissue classification for sCT generation. Fuzzy c-means was used for the automatic classification which was followed by voxel-wise attenuation coefficient assignment as a weighted sum of those of the component tissues. Performance evaluation: MR data collected using the proposed pulse sequence were compared to those using a traditional two-point Dixon approach. Image quality measures, including image resolution and uniformity, were evaluated using an MR ACR phantom. Data collected from 25 normal volunteers were used to evaluate the accuracy of the proposed method compared to the template-based approach. Notably, the template approach is applicable here, that is normal volunteers, but may not be robust enough for patients with pathologies. RESULTS: The free breathing UTE-mDixon pulse sequence yielded images with quality comparable to those using the traditional breath holding mDixon sequence. Furthermore, by capturing the signal before T2* decay, the UTE-mDixon image provided lung and bone information which the mDixon image did not. The combination of Dixon water, Dixon fat, and the Water fraction was the most robust for tissue clustering and supported the classification of six tissues, that is, air, lung, fat, soft tissue, low-density bone, and dense bone, used to generate the sCT. The thoracic sCT had a mean absolute difference from the template-based (reference) CT of less than 50 HU and which was better agreement with the reference CT than the results produced using the traditional Dixon-based data. CONCLUSION: MR thoracic acquisition and analyses have been established to automatically provide six distinguishable tissue types to generate sCT for MR-based AC of PET/MR and for MR-only RTP.


Subject(s)
Image Processing, Computer-Assisted/methods , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Cluster Analysis , Humans
5.
J Investig Med ; 63(7): 856-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26230492

ABSTRACT

OBJECTIVE: The aim of this study was to determine if differences in coronary endothelial function are observed between asymptomatic women with type 2 diabetes mellitus (DM) and control subjects using coronary phase contrast flow velocity magnetic resonance imaging in response to cold pressor stress, an established endothelium-dependent vasodilatory stress. METHODS: Phase contrast flow velocity imaging of the right coronary artery was performed in 7 asymptomatic premenopausal women with DM and 8 healthy female participants in response to the cold pressor test at 3 T. RESULTS: There was no significant difference in percent increase in coronary flow velocity from rest to peak flow velocity between DM and control subjects (32% ± 22% vs 46% ± 17%; P = 0.11). However, percent increase in coronary flow velocity was lower in DM than in control subjects (-3% ± 14% vs 31% ± 30%; P = 0.01) during the second minute of cold pressor stress, when endothelial-mediated vasodilation should occur. CONCLUSIONS: Asymptomatic women with DM demonstrate reduced coronary flow velocity during the second minute of cold pressor stress, indicating coronary endothelial dysfunction.


Subject(s)
Coronary Vessels/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/physiopathology , Magnetic Resonance Imaging/methods , Adult , Blood Flow Velocity , Coronary Circulation , Female , Humans
6.
Med Phys ; 42(8): 4974-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26233223

ABSTRACT

PURPOSE: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. METHODS: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2(∗) images (1/T2(∗)) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2(∗), were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. RESULTS: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 µs (max: 1.350 µs; min: 0.180 µs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (-22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. CONCLUSIONS: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Tomography/methods , Cluster Analysis , Feasibility Studies , Humans , Skull/anatomy & histology
7.
Radiat Oncol ; 10: 37, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25889107

ABSTRACT

BACKGROUND: This study describes initial testing and evaluation of a vertical-field open Magnetic Resonance Imaging (MRI) scanner for the purpose of simulation in radiation therapy for prostate cancer. We have evaluated the clinical workflow of using open MRI as a sole modality for simulation and planning. Relevant results related to MRI alignment (vs. CT) reference dataset with Cone-Beam CT (CBCT) for daily localization are presented. METHODS: Ten patients participated in an IRB approved study utilizing MRI along with CT simulation with the intent of evaluating the MRI-simulation process. Differences in prostate gland volume, seminal vesicles, and penile bulb were assessed with MRI and compared to CT. To evaluate dose calculation accuracy, bulk-density-assignments were mapped onto respective MRI datasets and treated IMRT plans were re-calculated. For image localization purposes, 400 CBCTs were re-evaluated with MRI as the reference dataset and daily shifts compared against CBCT-to-CT registration. Planning margins based on MRI/CBCT shifts were computed using the van Herk formalism. RESULTS: Significant organ contour differences were noted between MRI and CT. Prostate volumes were on average 39.7% (p = 0.002) larger on CT than MRI. No significant difference was found in seminal vesicle volumes (p = 0.454). Penile bulb volumes were 61.1% higher on CT, without statistical significance (p = 0.074). MRI-based dose calculations with assigned bulk densities produced agreement within 1% with heterogeneity corrected CT calculations. The differences in shift positions for the cohort between CBCT-to-CT registration and CBCT-to-MRI registration are -0.15 ± 0.25 cm (anterior-posterior), 0.05 ± 0.19 cm (superior-inferior), and -0.01 ± 0.14 cm (left-right). CONCLUSIONS: This study confirms the potential of using an open-field MRI scanner as primary imaging modality for prostate cancer treatment planning simulation, dose calculations and daily image localization.


Subject(s)
Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Seminal Vesicles/pathology , Algorithms , Humans , Male , Prognosis , Radiotherapy Dosage , Seminal Vesicles/radiation effects , Tomography, X-Ray Computed/methods , Workflow
8.
Magn Reson Med ; 73(3): 939-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24604617

ABSTRACT

PURPOSE: Inaccuracy of conventional four-dimensional (4D) flow MR imaging in the presence of random unsteady and turbulent blood flow distal to a narrowing has been an important challenge. Previous investigations have revealed that shorter echo times (TE) decrease the errors, leading to more accurate flow assessments. METHODS: In this study, as part of a 4D flow acquisition, an Ultra-Short TE (UTE) method was adopted. UTE works based on a center-out radial k-space trajectory that inherently has a short TE. By employing free induction decay sampling starting from read-out gradient ramp-up, and by combining the refocusing lobe of the slice select gradient with the bipolar flow encoding gradient, TEs of ≈1 msec may be achieved. RESULTS: Both steady and pulsatile flow regimes, and in each case a range of Reynolds numbers, were studied in an in-vitro model. Flow assessment at low and medium flow rates demonstrated a good agreement between 4D UTE and conventional 4D flow techniques. However, 4D UTE flow significantly outperformed conventional 4D flow, at high flow rates for both steady and pulsatile flow regimes. Feasibility of the method in one patient with Aortic Stenosis was also demonstrated. CONCLUSION: For both steady and pulsatile high flow rates, the measured flow distal to the stenotic narrowing using conventional 4D flow revealed more than 20% error compared to the ground-truth flow. This error was reduced to less than 5% using the 4D UTE flow technique.


Subject(s)
Aortic Valve Stenosis/physiopathology , Blood Flow Velocity , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Rheology/methods , Algorithms , Aortic Valve Stenosis/diagnosis , Feasibility Studies , Humans , Image Enhancement/methods , Magnetic Resonance Angiography/instrumentation , Phantoms, Imaging , Pulsatile Flow , Reproducibility of Results , Sensitivity and Specificity
9.
Med Phys ; 41(10): 102301, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25281971

ABSTRACT

PURPOSE: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. METHODS: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2(∗) = 1/T2(∗), was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2(∗) of cortical bone. RESULTS: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2(∗) of human skull was measured as 0.2-0.3 ms(-1) depending on the specific region, which is more than ten times greater than the R2(∗) of soft tissue. The water fraction in human skull was measured to be 60%-80%, which is significantly less than the >90% water fraction in brain. High-quality, bone-enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. CONCLUSIONS: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2(∗) and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Skull/anatomy & histology , Artifacts , Brain/anatomy & histology , Feasibility Studies , Humans , Photons , Positron-Emission Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Signal-To-Noise Ratio , Water
10.
Biomed Res Int ; 2014: 231090, 2014.
Article in English | MEDLINE | ID: mdl-24812609

ABSTRACT

The use of ionizing radiation for cancer treatment has undergone extraordinary development during the past hundred years. The advancement of medical imaging has been critical in helping to achieve this change. The invention of computed tomography (CT) was pivotal in the development of treatment planning. Despite some disadvantages, CT remains the only three-dimensional imaging modality used for dose calculation. Newer image modalities, such as magnetic resonance (MR) imaging and positron emission tomography (PET), are also used secondarily in the treatment-planning process. MR, with its better tissue contrast and resolution than those of CT, improves tumor definition compared with CT planning alone. PET also provides metabolic information to supplement the CT and MR anatomical information. With emerging molecular imaging techniques, the ability to visualize and characterize tumors with regard to their metabolic profile, active pathways, and genetic markers, both across different tumors and within individual, heterogeneous tumors, will inform clinicians regarding the treatment options most likely to benefit a patient and to detect at the earliest time possible if and where a chosen therapy is working. In the post-human-genome era, multimodality scanners such as PET/CT and PET/MR will provide optimal tumor targeting information.


Subject(s)
Diagnostic Imaging , Radiotherapy Planning, Computer-Assisted/trends , Humans
11.
J Magn Reson Imaging ; 39(6): 1477-85, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24123721

ABSTRACT

PURPOSE: To validate conventional phase-contrast MRI (PC-MRI) measurements of steady and pulsatile flows through stenotic phantoms with various degrees of narrowing at Reynolds numbers mimicking flows in the human iliac artery using stereoscopic particle image velocimetry (SPIV) as gold standard. MATERIALS AND METHODS: A series of detailed experiments are reported for validation of MR measurements of steady and pulsatile flows with SPIV and CFD on three different stenotic models with 50%, 74%, and 87% area occlusions at three sites: two diameters proximal to the stenosis, at the throat, and two diameters distal to the stenosis. RESULTS: Agreement between conventional spin-warp PC-MRI with Cartesian read-out and SPIV was demonstrated for both steady and pulsatile flows with mean Reynolds numbers of 130, 160, and 190 at the inlet by evaluating the linear regression between the two methods. The analysis revealed a correlation coefficient of > 0.99 and > 0.96 for steady and pulsatile flows, respectively. Additionally, it was found that the most accurate measures of flow by the sequence were at the throat of the stenosis (error < 5% for both steady and pulsatile mean flows). The flow rate error distal to the stenosis was primarily found to be a function of narrowing severity including dependence on proper Venc selection. CONCLUSION: SPIV and CFD provide excellent approaches to in vitro validation of new or existing PC-MRI flow measurement techniques.


Subject(s)
Hydrodynamics , Magnetic Resonance Imaging/methods , Pulsatile Flow , Rheology/methods , Blood Flow Velocity , Constriction, Pathologic , In Vitro Techniques , Magnetics , Phantoms, Imaging , Reproducibility of Results
12.
Article in English | MEDLINE | ID: mdl-24109884

ABSTRACT

4D flow MRI is a powerful technique for quantitative flow assessment and visualization of complex flow patterns and hemodynamics of cardiovascular flows. This technique results in more anatomical information and comprehensive assessment of blood flow. However, conventional 4D PC MRI suffers from a few obstacles for clinical applications. The total scan time is long, especially in large volumes with high spatial resolutions. Inaccuracy of conventional Cartesian PC MRI in the setting of atherosclerosis and in general, disturbed and turbulent blood flow is another important challenge. This inaccuracy is the consequence of signal loss, intravoxel dephasing and flow-related artifact in the presence of disturbed and turbulent flow. Spiral k-space trajectory has valuable attributes which can help overcome some of the problems with 4D flow Cartesian acquisitions. Spiral trajectory benefits from shorter TE and reduces the flow-related artifacts. In addition, short spiral readouts with spiral interleaves can significantly reduce the total scan time, reducing the chances of patient motion which may also corrupt the data in the form of motion artifacts. In this paper, the accuracy of flow assessment and flow visualization with reduced TE 4D Spiral PC was investigated and good agreement was observed between the spiral and conventional technique. The systolic mean velocity, peak flow and the average flow in CCA and ICA of normal volunteers using 4D spiral PC MRI showed errors less than 10% compared to conventional 4D PC MRI. In addition, the scan time using spiral sequence was 3∶31 min which is half of the time using conventional sequence.


Subject(s)
Carotid Arteries/physiology , Hemodynamics/physiology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Adult , Blood Flow Velocity/physiology , Humans , Time Factors
13.
J Cardiovasc Magn Reson ; 15: 42, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23706156

ABSTRACT

BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.


Subject(s)
Carotid Artery Diseases/diagnosis , Magnetic Resonance Angiography/methods , Neovascularization, Pathologic/diagnosis , Carotid Artery Diseases/pathology , Contrast Media , Feasibility Studies , Gadolinium DTPA , Humans , Least-Squares Analysis , Neovascularization, Pathologic/pathology , Phantoms, Imaging , Time Factors
14.
Article in English | MEDLINE | ID: mdl-23365836

ABSTRACT

Phase-contrast (PC) MRI is a non-invasive technique to assess cardiovascular blood flow. However, this technique is not accurate for instance at the carotid bifurcation due to turbulent and disturbed blood flow in atherosclerotic disease. Flow quantification using conventional PC MRI distal to stenotic vessels suffers from intravoxel dephasing and flow artifacts. Previous studies have shown that short echo time (TE) potentially decreases the phase errors. In this work, a novel 3D cine UTE-PC imaging method is designed to measure the blood velocity in the carotid bifurcation using a UTE center-out radial trajectory and short TE time compared to standard PC MRI sequences. With a new phase error correction technique based on autocorrelation method, the proposed 3D cine UTE-PC has the potential to achieve high accuracy for quantification and visualization of velocity jet distal to a stenosis. Herein, we test the feasibility of the method in determining accurate flow waveforms in normal volunteers.


Subject(s)
Atherosclerosis , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Models, Cardiovascular , Atherosclerosis/diagnostic imaging , Atherosclerosis/physiopathology , Blood Flow Velocity , Constriction, Pathologic/diagnostic imaging , Constriction, Pathologic/physiopathology , Female , Humans , Male , Radiography
15.
Article in English | MEDLINE | ID: mdl-23365907

ABSTRACT

Assessment of blood flow is an important factor in diagnosis of cardiovascular disease. Vascular stenosis result in disturbed blood flow, flow recirculation, turbulence, and flow jet. These types of flows cause erroneous quantification of blood flow using conventional Phase contrast (PC) MRI techniques. Previous investigations have revealed that shorter Echo Times (TE) can decrease the quantification errors. In this paper, we performed phantom studies under steady flow to validate the UTE technique. Investigation of three different constant flow rates revealed a significant improvement in flow quantification and reduction of flow artifacts in comparison to Cartesian Phase-Contrast MRI.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Humans , Magnetic Resonance Imaging/instrumentation , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...