Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28955599

ABSTRACT

Conventional methods for intraoperative histopathologic diagnosis are labour- and time-intensive, and may delay decision-making during brain-tumour surgery. Stimulated Raman scattering (SRS) microscopy, a label-free optical process, has been shown to rapidly detect brain-tumour infiltration in fresh, unprocessed human tissues. Here, we demonstrate the first application of SRS microscopy in the operating room by using a portable fibre-laser-based microscope and unprocessed specimens from 101 neurosurgical patients. We also introduce an image-processing method - stimulated Raman histology (SRH) - which leverages SRS images to create virtual haematoxylin-and-eosin-stained slides, revealing essential diagnostic features. In a simulation of intraoperative pathologic consultation in 30 patients, we found a remarkable concordance of SRH and conventional histology for predicting diagnosis (Cohen's kappa, κ > 0.89), with accuracy exceeding 92%. We also built and validated a multilayer perceptron based on quantified SRH image attributes that predicts brain-tumour subtype with 90% accuracy. Our findings provide insight into how SRH can now be used to improve the surgical care of brain tumour patients.

2.
Methods Enzymol ; 414: 440-68, 2006.
Article in English | MEDLINE | ID: mdl-17110206

ABSTRACT

Compounds with similar target specificities and modes of inhibition cause similar cellular phenotypes. Based on this observation, we hypothesized that we could quantitatively classify compounds with diverse mechanisms of action using cellular phenotypes and identify compounds with unintended cellular activities within a chemical series. We have developed Cytometrix technologies, a highly automated image-based system capable of quantifying, clustering, and classifying changes in cellular phenotypes for this purpose. Using this system, 45 out of 51 known compounds were accurately classified into 12 distinct mechanisms of action. We also demonstrate microtubule-binding activity in one of seven related cytochalasin actin poisons. This technology can be used for a variety of drug discovery applications, including high-throughput primary screening of chemical and siRNA libraries and as a secondary assay to detect unintended activities and toxicities.


Subject(s)
Combinatorial Chemistry Techniques/methods , Cytological Techniques , Image Processing, Computer-Assisted/methods , Actins/chemistry , Animals , Cell Line, Tumor , Cell Size , Cells, Cultured , Combinatorial Chemistry Techniques/instrumentation , Cytochalasins/chemistry , Endothelium, Vascular/cytology , Humans , Immunohistochemistry , Microscopy, Fluorescence , Phenotype , RNA, Small Interfering/metabolism
3.
PLoS Biol ; 3(5): e128, 2005 May.
Article in English | MEDLINE | ID: mdl-15799708

ABSTRACT

We have implemented an unbiased cell morphology-based screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM) automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinase-inhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP) of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1), a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 A resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates.


Subject(s)
Cell Physiological Phenomena , Cells/cytology , Cellular Structures/ultrastructure , Image Processing, Computer-Assisted/methods , Alcohol Oxidoreductases/chemistry , Apoptosis , Cell Line , Cell Line, Tumor , Crystallography, X-Ray/methods , Female , Humans , Molecular Sequence Data , Protein Conformation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...