Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(3): 1212-1223, 2024.
Article in English | MEDLINE | ID: mdl-38323317

ABSTRACT

Background: The tumor-associated disialoganglioside GD2 is a bona fide immunotherapy target in neuroblastoma and other childhood tumors, including Ewing sarcoma and osteosarcoma. GD2-targeting antibodies proved to be effective in neuroblastoma and GD2-targeting chimeric antigen receptors (CAR)- expressing T cells as well as natural killer T cells (NKTs) are emerging. However, assessment of intra- and intertumoral heterogeneity has been complicated by ineffective immunohistochemistry as well as sampling bias in disseminated disease. Therefore, a non-invasive approach for the assessment and visualization of GD2 expression in-vivo is of upmost interest and might enable a more appropriate treatment stratification. Methods: Recently, [64Cu]Cu-NOTA-ch14.18/CHO (64Cu-GD2), a radiolabeled GD2-antibody for imaging with Positron-Emission-Tomography (PET) was developed. We here report our first clinical patients' series (n = 11) in different pediatric tumors assessed with 64Cu-GD2 PET/MRI. GD2-expression in tumors and tissue uptake in organs was evaluated by semiquantitative measurements of standardized uptake values (SUV) with PET/MRI on day 1 p.i. (n = 11) as well as on day 2 p.i. (n = 6). Results: In 8 of 9 patients with suspicious tumor lesions on PET/MRI at least one metastasis showed an increased 64Cu-GD2 uptake and a high tracer uptake (SUVmax > 10) was measured in 4 of those 8 patients. Of note, sufficient image quality with high tumor to background contrast was readily achieved on day 1. In case of 64Cu-GD2-positive lesions, an excellent tumor to background ratio (at least 6:1) was observed in bones, muscles or lungs, while lower tumor to background contrast was seen in the spleen, liver and kidneys. Furthermore, we demonstrated extensive tumor heterogeneity between patients as well as among different metastatic sites in individual patients. Dosimetry assessment revealed a whole-body dose of only 0.03 mGy/MBq (range 0.02-0.04). Conclusion: 64Cu-GD2 PET/MRI enables the non-invasive assessment of individual heterogeneity of GD2 expression, which challenges our current clinical practice of patient selection, stratification and immunotherapy application scheme for treatment with anti-GD2 directed therapies.


Subject(s)
Antibodies, Monoclonal , Neuroblastoma , Child , Humans , Antibodies, Monoclonal/therapeutic use , Neuroblastoma/drug therapy , Positron-Emission Tomography/methods
2.
Clin Nucl Med ; 49(3): 207-214, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38271237

ABSTRACT

AIM/INTRODUCTION: Peptide receptor radionuclide therapy (PRRT) represents a cornerstone of treatment regimens for patients with low proliferative neuroendocrine tumors (NETs). However, in patients experiencing somatostatin receptor-positive NET with higher proliferation rates, a value and potential therapeutic benefit of PRRT as part of multimodal treatment approaches and potentially with addition of radiosensitizing agents has not yet been established. PATIENTS AND METHODS: In this study, 20 patients with histologically confirmed gastroenteropancreatic (GEP) NET with proliferation rates (Ki67) between 15% and 55% were treated either with PRRT only (n = 10) or with a combination therapy (n = 10) comprising PRRT and capecitabine/temozolomide (CAP/TEM) for at least 2 consecutive cycles. RESULTS: Disease control rate in patients treated with PRRT alone was 60% (40% stable disease and 20% partial response). Strikingly, in patients treated with PRRT in combination with radiosensitization (CAP/TEM), the disease control rate was 90% (20% stable disease and 70% partial response). The median progression-free survival in the PRRT only group was 12 months, whereas the median progression-free survival in the PRRT + CAP/TEM group was 26 months and has not been yet reached for all patients in the group during the observation period. The median disease-specific survival for patients with PRRT alone was 51 months, whereas this end point was not yet reached in the PRRT + CAP/TEM group. Moreover, the PRRT + CAP/TEM group showed a significantly higher reduction of SSTR-PET-based metabolic tumor volume and chromogranin A levels compared with the PRRT only group. Importantly, adverse events of all grades did not differ between both groups. CONCLUSIONS: PRRT + CAP/TEM represents a highly promising and well-tolerated therapeutic regimen for patients experiencing somatostatin receptor-positive NET with higher (Ki67 ≥ 15%) proliferation rate. Prospective randomized clinical trials are warranted.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Organometallic Compounds , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Octreotide/therapeutic use , Pilot Projects , Receptors, Somatostatin/metabolism , Ki-67 Antigen , Prospective Studies , Pancreatic Neoplasms/pathology , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/metabolism , Radioisotopes/therapeutic use , Organometallic Compounds/therapeutic use
3.
Front Med (Lausanne) ; 10: 1169970, 2023.
Article in English | MEDLINE | ID: mdl-37359009

ABSTRACT

Aim/introduction: Peptide receptor radionuclide therapy (PRRT) is an effective and well-tolerated treatment option for patients with neuroendocrine tumors (NETs) that prolongs progression-free survival (PFS). However, the limited overall survival (OS) rates in the prospective phase III study (NETTER1) highlighted the need to identify patient-specific long-term prognostic markers to avoid unnecessary side effects and enable better treatment stratification. Therefore, we retrospectively analyzed prognostic risk factors in NET patients treated with PRRT. Methods: A total of 62 NET patients (G1: 33.9%, G2 62.9%, and G3 3.2%) with at least 2 cycles of PRRT with [177Lu]Lu-HA-DOTATATE (mean 4 cycles) were analyzed. Of which, 53 patients had primary tumors in the gastroenteropancreatic (GEP) system, 6 had bronchopulmonary NET, and 3 had NET of unknown origin. [68Ga]Ga-HA-DOTATATE PET/CT scans were performed before PRRT start and after the second treatment cycle. Different clinical laboratory parameters, as well as PET parameters, such as SUVmean, SUVmax, and PET-based molecular tumor volume (MTV), were collected, and their impact on the OS was investigated. Patient data with a mean follow-up of 62 months (range 20-105) were analyzed. Results: According to interim PET/CT, 16 patients (25.8%) presented with partial response (PR), 38 (61.2%) with stable disease (SD), and 7 (11.3%) with progressive disease (PD). The 5-year OS was 61.8% for all patients, while bronchopulmonary NETs showed poorer OS than GEP-NETs. Multivariable Cox regression analysis showed that chromogranin A level and MTV together were highly significant predictors of therapeutic outcome (HR 2.67; 95% CI 1.41-4.91; p = 0.002). Treatment response was also influenced by the LDH level (HR 0.98; 95% CI 0.9-1.0; p = 0.007) and patient age (HR 1.15; 95% CI 1.08-1.23; p < 0.001). ROC analysis revealed baseline MTV > 112.5 ml [Sens. 91%; Spec. 50%; AUC 0.67 (95% CI 0.51-0.84, p = 0.043)] and chromogranin A >1,250.75 µg/l [Sens. 87%; Spec. 56%; AUC 0.73 (95% CI 0.57-0.88, p = 0.009)] as the best cutoff values for identifying patients with worse 5-year survival. Conclusion: Our retrospective analysis defined MTV and chromogranin A in combination as significant prognostic factors for long-term OS. Furthermore, an interim PET/CT after two cycles has the potential in identifying non-responders who may benefit from a change in therapy at an early stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...